Experimental Investigation of the Pressure Distribution beneath a Floating Ice Block

Discrete ice floes approaching an ice cover from upstream will contribute to the lengthening of the cover or will become entrained in the flow. Currently, ice process models rely on empirical relationships to predict the behavior of ice floes at the leading edge of an intact ice cover. Knowledge of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydraulic engineering (New York, N.Y.) N.Y.), 2011-04, Vol.137 (4), p.399-411
Hauptverfasser: Ambtman, Karen E. Dow, Hicks, F. E, Steffler, P. M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Discrete ice floes approaching an ice cover from upstream will contribute to the lengthening of the cover or will become entrained in the flow. Currently, ice process models rely on empirical relationships to predict the behavior of ice floes at the leading edge of an intact ice cover. Knowledge of the hydrodynamic forces acting on individual ice floes is an important component of any model attempting to predict ice-cover progression. Experimental studies were conducted in a recirculating flume in the T. Blench Hydraulics Laboratory at the University of Alberta to increase the knowledge of the physical behavior of ice floes in water and the hydrodynamic forces that act on them. A hollow Plexiglas acrylic ice block outfitted with pressure taps was constructed to facilitate measurements of the pressure distribution beneath an ice block. The dynamic pressure was measured under the block for various block thickness-to-depth ratios and flow velocities. The dynamic pressure was found to decrease for increasing block thickness-to-approach flow depth ratios and increasing flow rates. A block with a rounded leading edge was also tested, and it showed a significantly reduced leading-edge pressure effect. The rectangular ice block results were categorized into separate effects: a pressure reduction attributable to Venturi effects and a pressure reduction attributable to leading-edge effects. A predictive relationship was developed for the pressure distribution beneath a floating ice block and the subsequent submerging force and underturning moment.
ISSN:0733-9429
1943-7900
DOI:10.1061/(ASCE)HY.1943-7900.0000315