Efficacy of ultraviolet radiation and hydrogen peroxide oxidation to eliminate large number of pharmaceutical compounds in mixed solution

Ultraviolet photolysis and ultraviolet and hydrogen peroxide oxidation of fourteen commonly used pharmaceutical compounds and two personal care products in mixed solution using low pressure ultraviolet lamp was investigated in laboratory batch experiments. Removal of the compounds followed the first...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of environmental science and technology (Tehran) 2011, Vol.8 (1), p.19-30
Hauptverfasser: Giri, R.R, Ozaki, H, Takayanagi, Y, Taniguchi, S, Takanami, R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ultraviolet photolysis and ultraviolet and hydrogen peroxide oxidation of fourteen commonly used pharmaceutical compounds and two personal care products in mixed solution using low pressure ultraviolet lamp was investigated in laboratory batch experiments. Removal of the compounds followed the first-order reaction kinetic. Three distinct impacts of hydrogen peroxide on ultraviolet and hydrogen peroxide oxidation of the compounds (positive, negative and no significant effect) were observed. Removal behavior of the several tested compounds in mixed solution varied significantly than their respective behavior in absence of coexisting compounds. Clofibric acid, diclofenac, fenoprofen, isopropylantipyrine, ketoprofen, phenytoin and triclosan were removed very efficiently (> 96 %) by ultraviolet photolysis alone. Residual hydrogen peroxide during ultraviolet and hydrogen peroxide oxidation was quantitated for the first time. Hydrogen peroxide addition to ultraviolet photolysis was not worthy for majority of the tested compounds as their removal did not increase significantly and very big fractions (> 85 %) of the added hydrogen peroxide (0.29 ~ 1.47 mM) remained unused presumably due to small fluence of the lamp, very small molar absorption for hydrogen peroxide at 254 nm (27.06 /M.cm) and acidic pH of reaction solution (< 5.7). Further exploration on ultraviolet and hydrogen peroxide oxidation with higher fluence lamp and alkaline solution pH will clarify usefulness of the method to treat pharmaceutical contaminated waters.
ISSN:1735-1472
1735-2630
DOI:10.1007/BF03326192