Linear and nonalinear response to parameter variations in a mesoscale model

Parameter uncertainty in atmospheric model forcing and closure schemes has motivated both parameter estimation with data assimilation and use of pre-specified distributions to simulate model uncertainty in short-range ensemble prediction. This work assesses the potential for parameter estimation and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tellus. Series A, Dynamic meteorology and oceanography Dynamic meteorology and oceanography, 2011-05, Vol.63 (3), p.429-444
Hauptverfasser: Hacker, J P, Snyder, C, HA, SaY, POCERNICH, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Parameter uncertainty in atmospheric model forcing and closure schemes has motivated both parameter estimation with data assimilation and use of pre-specified distributions to simulate model uncertainty in short-range ensemble prediction. This work assesses the potential for parameter estimation and ensemble prediction by analysing 2 months of mesoscale ensemble predictions in which each member uses distinct, and fixed, settings for four model parameters. A space-filling parameter selection design leads to a unique parameter set for each ensemble member. An experiment to test linear scaling between parameter distribution width and ensemble spread shows the lack of a general linear response to parameters. Individual member near-surface spatial means, spatial variances and skill show that perturbed models are typically indistinguishable. Parameter-state rank correlation fields are not statistically significant, although the presence of other sources of noise may mask true correlations. Results suggest that ensemble prediction using perturbed parameters may be a simple complement to more complex model-error simulation methods, but that parameter estimation may prove difficult or costly for real mesoscale numerical weather prediction applications.
ISSN:0280-6495
1600-0870
DOI:10.1111/j.1600-0870.2010.00505.x