Contributions of Natural Emissions to Ozone and PM2.5 as Simulated by the Community Multiscale Air Quality (CMAQ) Model

The relative roles of natural and anthropogenic sources in determining ozone and fine particle concentrations over the continental United States (U.S.) are investigated using an expanded emissions inventory of natural sources and an updated version of the Community Multiscale Air Quality (CMAQ) mode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2011-06, Vol.45 (11), p.4817-4823
Hauptverfasser: Mueller, Stephen F, Mallard, Jonathan W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The relative roles of natural and anthropogenic sources in determining ozone and fine particle concentrations over the continental United States (U.S.) are investigated using an expanded emissions inventory of natural sources and an updated version of the Community Multiscale Air Quality (CMAQ) model. Various 12-month CMAQ simulations for the year 2002 using different sets of input emissions data are combined to delineate the contributions of background pollutants (i.e., model boundary conditions), natural emissions, anthropogenic emissions, as well as the specific impacts of lightning and wildfires. Results are compared with observations and previous air quality model simulations. Wildfires and lightning are both identified as contributing significantly to ozone levels with lightning NO x adding as much as 25–30 ppbV (or up to about 50%) to surface 8-h average natural O3 mixing ratios in the southeastern U.S. Simulated wildfire emissions added more than 50 ppbV (in some cases >90%) to 8-h natural O3 at several locations in the west. Modeling also indicates that natural emissions (including biogenic, oceanic, geogenic and fires) contributed ≤40% to the annual average of total simulated fine particle mass over the eastern two-thirds of the U.S. and >40% across most of the western U.S. Biogenic emissions are the dominant source of particulate mass over the entire U.S. and wildfire emissions are secondary. Averaged over the entire modeling domain, background and natural ozone are dominant with anthropogenically derived ozone contributing up to a third of the total only during summer. Background contributions to fine particle levels are relatively insignificant in comparison. Model results are also contrasted with the U.S. Environmental Protection Agency (EPA) default values for natural light scattering particle concentrations to be used for regional haze regulatory decision-making. Regional differences in EPA guidance are not supported by the modeling and EPA uncertainty estimates for default values are far smaller than the modeled variability in natural particle concentrations.
ISSN:0013-936X
1520-5851
DOI:10.1021/es103645m