Molecular phylogenetics of suborder Cactineae (Caryophyllales), including insights into photosynthetic diversification and historical biogeography

Premise of the study: Phylogenetic relationships were investigated among the eight families (Anacampserotaceae, Basellaceae, Cactaceae, Didiereaceae, Halophytaceae, Montiaceae, Portulacaceae, Talinaceae) that form suborder Cactineae (= Portulacineae) of the Caryophyllales. In addition, photosynthesi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of botany 2010-11, Vol.97 (11), p.1827-1847
Hauptverfasser: Ocampo, Gilberto, Columbus, J. Travis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Premise of the study: Phylogenetic relationships were investigated among the eight families (Anacampserotaceae, Basellaceae, Cactaceae, Didiereaceae, Halophytaceae, Montiaceae, Portulacaceae, Talinaceae) that form suborder Cactineae (= Portulacineae) of the Caryophyllales. In addition, photosynthesis diversification and historical biogeography were addressed. METHODS: Chloroplast DNA sequences, mostly noncoding, were used to estimate the phylogeny. Divergence times were calibrated using two Hawaiian Portulaca species, due to the lack of an unequivocal fossil record for Cactineae. Photosynthetic pathways were determined from carbon isotope ratios (δ¹³C) and leaf anatomy. Key results: Maximum likelihood and Bayesian analyses were consistent with previous studies in that the suborder, almost all families, and the ACPT clade (Anacampserotaceae, Cactaceae, Portulacaceae, Talinaceae) were strongly supported as monophyletic; however, relationships among families remain uncertain. The age of Cactineae was estimated to be 18.8 Myr. Leaf anatomy and δ¹³C and were congruent in most cases, and inconsistencies between these pointed to photosynthetic intermediates. Reconstruction of photosynthesis diversification showed C₃ to be the ancestral pathway, a shift to C₄ in Portulacaceae, and five independent origins of Crassulacean acid metabolism (CAM). Cactineae were inferred to have originated in the New World. CONCLUSIONS: Although the C₃ pathway is inferred as the ancestral state in Cactineae, some CAM activity has been reported in the literature in almost every family of the suborder, leaving open the possibility that CAM may have one origin in the group. Incongruence among loci could be due to internal short branches, which possibly represent rapid radiations in response to increasing aridity in the Miocene.
ISSN:0002-9122
1537-2197
DOI:10.3732/ajb.1000227