Cantilever Array Sensors Detect Specific Carbohydrate−Protein Interactions with Picomolar Sensitivity

Advances in carbohydrate sequencing technologies have revealed the tremendous complexity of the glycome. This complexity reflects the structural and chemical diversity of carbohydrates and is greater than that of proteins and oligonucleotides. The next step in understanding the biological function o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2011-05, Vol.5 (5), p.3670-3678
Hauptverfasser: Gruber, Kathrin, Horlacher, Tim, Castelli, Riccardo, Mader, Andreas, Seeberger, Peter H, Hermann, Bianca A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Advances in carbohydrate sequencing technologies have revealed the tremendous complexity of the glycome. This complexity reflects the structural and chemical diversity of carbohydrates and is greater than that of proteins and oligonucleotides. The next step in understanding the biological function of carbohydrates requires the identification and quantification of carbohydrate interactions with other biomolecules, in particular, with proteins. To this end, we have developed a cantilever array biosensor with a self-assembling carbohydrate-based sensing layer that selectively and sensitively detects carbohydrate−protein binding interactions. Specifically, we examined binding of mannosides and the protein cyanovirin-N, which binds and blocks the human immunodeficiency virus (HIV). Cyanovirin-N binding to immobilized oligomannosides on the cantilever resulted in mechanical surface stress that is transduced into a mechanical force and cantilever bending. The degree and duration of cantilever deflection correlates with the interaction’s strength, and comparative binding experiments reveal molecular binding preferences. This study establishes that carbohydrate-based cantilever biosensors are a robust, label-free, and scalable means to analyze carbohydrate−protein interactions and to detect picomolar concentrations of carbohydrate-binding proteins.
ISSN:1936-0851
1936-086X
DOI:10.1021/nn103626q