Noise and Bias In Square-Root Compression Schemes
We investigate data compression schemes for proposed all-sky diffraction-limited visible/NIR sky surveys aimed at the dark-energy problem. We show that lossy square-root compression to 1 bitpixel-1 pixe l - 1 of noise, followed by standard lossless compression algorithms, reduces the images to 2.5–4...
Gespeichert in:
Veröffentlicht in: | Publications of the Astronomical Society of the Pacific 2010-03, Vol.122 (889), p.336-346 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 346 |
---|---|
container_issue | 889 |
container_start_page | 336 |
container_title | Publications of the Astronomical Society of the Pacific |
container_volume | 122 |
creator | Bernstein, Gary M. Bebek, Chris Rhodes, Jason Stoughton, Chris Vanderveld, R. Ali Yeh, Penshu |
description | We investigate data compression schemes for proposed all-sky diffraction-limited visible/NIR sky surveys aimed at the dark-energy problem. We show that lossy square-root compression to 1 bitpixel-1
pixe
l
-
1
of noise, followed by standard lossless compression algorithms, reduces the images to 2.5–4 bitspixel-1
pixe
l
-
1
, depending primarily upon the level of cosmic-ray contamination of the images. Compression to this level adds noise equivalent to≤ 10%
≤
10
%
penalty in observing time. We derive an analytic correction to flux biases inherent to the square-root compression scheme. Numerical tests on simple galaxy models confirm that galaxy fluxes and shapes are measured with systematic biases≲10-4
≲
10
-
4
induced by the compression scheme, well below the requirements of supernova and weak gravitational lensing dark-energy experiments. In a related investigation, Vanderveld and coworkers bound the shape biases using realistic simulated images of the high-Galactic–latitude sky. The square-root preprocessing step has advantages over simple (linear) decimation when there are many bright objects or cosmic rays in the field, or when the background level will vary. |
doi_str_mv | 10.1086/651281 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_867749469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>10.1086/651281</jstor_id><sourcerecordid>10.1086/651281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-15d41ffaba9842b08ca2a1fe7ed4538f7212df2779ab3cd41ca85df381e0e0763</originalsourceid><addsrcrecordid>eNp10EtLxDAUBeAgCo6j_oaCqKtqbtIm6VKLj4FBwce63EkT7NA2M7mdhf_eSgd3ri5cPg6Hw9g58BvgRt2qHISBAzaDXJpUGi0P2YxznqVKGH7MTojWnAMY4DMGL6Ehl2BfJ_cNUrLok_ftDqNL30IYkjJ0m-iImjD-7ZfrHJ2yI48tubP9nbPPx4eP8jldvj4tyrtlaiXIIYW8zsB7XGFhMrHixqJA8E67Oht7eS1A1F5oXeBK2tFaNHntpQHHHddKztn1lLuJYbtzNFRdQ9a1LfYu7KgySuusyFQxyqtJ2hiIovPVJjYdxu8KePU7STVNMsLLfSSSxdZH7G1Df1qIHJSWenQXk1vTEOJ_aT8bFGkZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867749469</pqid></control><display><type>article</type><title>Noise and Bias In Square-Root Compression Schemes</title><source>Jstor Complete Legacy</source><source>Institute of Physics Journals</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Bernstein, Gary M. ; Bebek, Chris ; Rhodes, Jason ; Stoughton, Chris ; Vanderveld, R. Ali ; Yeh, Penshu</creator><creatorcontrib>Bernstein, Gary M. ; Bebek, Chris ; Rhodes, Jason ; Stoughton, Chris ; Vanderveld, R. Ali ; Yeh, Penshu</creatorcontrib><description>We investigate data compression schemes for proposed all-sky diffraction-limited visible/NIR sky surveys aimed at the dark-energy problem. We show that lossy square-root compression to 1 bitpixel-1
pixe
l
-
1
of noise, followed by standard lossless compression algorithms, reduces the images to 2.5–4 bitspixel-1
pixe
l
-
1
, depending primarily upon the level of cosmic-ray contamination of the images. Compression to this level adds noise equivalent to≤ 10%
≤
10
%
penalty in observing time. We derive an analytic correction to flux biases inherent to the square-root compression scheme. Numerical tests on simple galaxy models confirm that galaxy fluxes and shapes are measured with systematic biases≲10-4
≲
10
-
4
induced by the compression scheme, well below the requirements of supernova and weak gravitational lensing dark-energy experiments. In a related investigation, Vanderveld and coworkers bound the shape biases using realistic simulated images of the high-Galactic–latitude sky. The square-root preprocessing step has advantages over simple (linear) decimation when there are many bright objects or cosmic rays in the field, or when the background level will vary.</description><identifier>ISSN: 0004-6280</identifier><identifier>EISSN: 1538-3873</identifier><identifier>DOI: 10.1086/651281</identifier><identifier>CODEN: PASPAU</identifier><language>eng</language><publisher>Chicago, IL: University of Chicago Press</publisher><subject>Astronomy ; Cosmic rays ; Earth, ocean, space ; Ellipticity ; Exact sciences and technology ; Galaxies ; Image compression ; Information retrieval noise ; Lossy compression ; Noise measurement ; Pixels ; Raw data ; Signal noise</subject><ispartof>Publications of the Astronomical Society of the Pacific, 2010-03, Vol.122 (889), p.336-346</ispartof><rights>2010. The Astronomical Society of the Pacific. All rights reserved. Printed in U.S.A.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-15d41ffaba9842b08ca2a1fe7ed4538f7212df2779ab3cd41ca85df381e0e0763</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,799,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22516737$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bernstein, Gary M.</creatorcontrib><creatorcontrib>Bebek, Chris</creatorcontrib><creatorcontrib>Rhodes, Jason</creatorcontrib><creatorcontrib>Stoughton, Chris</creatorcontrib><creatorcontrib>Vanderveld, R. Ali</creatorcontrib><creatorcontrib>Yeh, Penshu</creatorcontrib><title>Noise and Bias In Square-Root Compression Schemes</title><title>Publications of the Astronomical Society of the Pacific</title><description>We investigate data compression schemes for proposed all-sky diffraction-limited visible/NIR sky surveys aimed at the dark-energy problem. We show that lossy square-root compression to 1 bitpixel-1
pixe
l
-
1
of noise, followed by standard lossless compression algorithms, reduces the images to 2.5–4 bitspixel-1
pixe
l
-
1
, depending primarily upon the level of cosmic-ray contamination of the images. Compression to this level adds noise equivalent to≤ 10%
≤
10
%
penalty in observing time. We derive an analytic correction to flux biases inherent to the square-root compression scheme. Numerical tests on simple galaxy models confirm that galaxy fluxes and shapes are measured with systematic biases≲10-4
≲
10
-
4
induced by the compression scheme, well below the requirements of supernova and weak gravitational lensing dark-energy experiments. In a related investigation, Vanderveld and coworkers bound the shape biases using realistic simulated images of the high-Galactic–latitude sky. The square-root preprocessing step has advantages over simple (linear) decimation when there are many bright objects or cosmic rays in the field, or when the background level will vary.</description><subject>Astronomy</subject><subject>Cosmic rays</subject><subject>Earth, ocean, space</subject><subject>Ellipticity</subject><subject>Exact sciences and technology</subject><subject>Galaxies</subject><subject>Image compression</subject><subject>Information retrieval noise</subject><subject>Lossy compression</subject><subject>Noise measurement</subject><subject>Pixels</subject><subject>Raw data</subject><subject>Signal noise</subject><issn>0004-6280</issn><issn>1538-3873</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp10EtLxDAUBeAgCo6j_oaCqKtqbtIm6VKLj4FBwce63EkT7NA2M7mdhf_eSgd3ri5cPg6Hw9g58BvgRt2qHISBAzaDXJpUGi0P2YxznqVKGH7MTojWnAMY4DMGL6Ehl2BfJ_cNUrLok_ftDqNL30IYkjJ0m-iImjD-7ZfrHJ2yI48tubP9nbPPx4eP8jldvj4tyrtlaiXIIYW8zsB7XGFhMrHixqJA8E67Oht7eS1A1F5oXeBK2tFaNHntpQHHHddKztn1lLuJYbtzNFRdQ9a1LfYu7KgySuusyFQxyqtJ2hiIovPVJjYdxu8KePU7STVNMsLLfSSSxdZH7G1Df1qIHJSWenQXk1vTEOJ_aT8bFGkZ</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Bernstein, Gary M.</creator><creator>Bebek, Chris</creator><creator>Rhodes, Jason</creator><creator>Stoughton, Chris</creator><creator>Vanderveld, R. Ali</creator><creator>Yeh, Penshu</creator><general>University of Chicago Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20100301</creationdate><title>Noise and Bias In Square-Root Compression Schemes</title><author>Bernstein, Gary M. ; Bebek, Chris ; Rhodes, Jason ; Stoughton, Chris ; Vanderveld, R. Ali ; Yeh, Penshu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-15d41ffaba9842b08ca2a1fe7ed4538f7212df2779ab3cd41ca85df381e0e0763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Astronomy</topic><topic>Cosmic rays</topic><topic>Earth, ocean, space</topic><topic>Ellipticity</topic><topic>Exact sciences and technology</topic><topic>Galaxies</topic><topic>Image compression</topic><topic>Information retrieval noise</topic><topic>Lossy compression</topic><topic>Noise measurement</topic><topic>Pixels</topic><topic>Raw data</topic><topic>Signal noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bernstein, Gary M.</creatorcontrib><creatorcontrib>Bebek, Chris</creatorcontrib><creatorcontrib>Rhodes, Jason</creatorcontrib><creatorcontrib>Stoughton, Chris</creatorcontrib><creatorcontrib>Vanderveld, R. Ali</creatorcontrib><creatorcontrib>Yeh, Penshu</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Publications of the Astronomical Society of the Pacific</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bernstein, Gary M.</au><au>Bebek, Chris</au><au>Rhodes, Jason</au><au>Stoughton, Chris</au><au>Vanderveld, R. Ali</au><au>Yeh, Penshu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noise and Bias In Square-Root Compression Schemes</atitle><jtitle>Publications of the Astronomical Society of the Pacific</jtitle><date>2010-03-01</date><risdate>2010</risdate><volume>122</volume><issue>889</issue><spage>336</spage><epage>346</epage><pages>336-346</pages><issn>0004-6280</issn><eissn>1538-3873</eissn><coden>PASPAU</coden><abstract>We investigate data compression schemes for proposed all-sky diffraction-limited visible/NIR sky surveys aimed at the dark-energy problem. We show that lossy square-root compression to 1 bitpixel-1
pixe
l
-
1
of noise, followed by standard lossless compression algorithms, reduces the images to 2.5–4 bitspixel-1
pixe
l
-
1
, depending primarily upon the level of cosmic-ray contamination of the images. Compression to this level adds noise equivalent to≤ 10%
≤
10
%
penalty in observing time. We derive an analytic correction to flux biases inherent to the square-root compression scheme. Numerical tests on simple galaxy models confirm that galaxy fluxes and shapes are measured with systematic biases≲10-4
≲
10
-
4
induced by the compression scheme, well below the requirements of supernova and weak gravitational lensing dark-energy experiments. In a related investigation, Vanderveld and coworkers bound the shape biases using realistic simulated images of the high-Galactic–latitude sky. The square-root preprocessing step has advantages over simple (linear) decimation when there are many bright objects or cosmic rays in the field, or when the background level will vary.</abstract><cop>Chicago, IL</cop><pub>University of Chicago Press</pub><doi>10.1086/651281</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-6280 |
ispartof | Publications of the Astronomical Society of the Pacific, 2010-03, Vol.122 (889), p.336-346 |
issn | 0004-6280 1538-3873 |
language | eng |
recordid | cdi_proquest_miscellaneous_867749469 |
source | Jstor Complete Legacy; Institute of Physics Journals; Alma/SFX Local Collection; EZB Electronic Journals Library |
subjects | Astronomy Cosmic rays Earth, ocean, space Ellipticity Exact sciences and technology Galaxies Image compression Information retrieval noise Lossy compression Noise measurement Pixels Raw data Signal noise |
title | Noise and Bias In Square-Root Compression Schemes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A38%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noise%20and%20Bias%20In%20Square-Root%20Compression%20Schemes&rft.jtitle=Publications%20of%20the%20Astronomical%20Society%20of%20the%20Pacific&rft.au=Bernstein,%20Gary%20M.&rft.date=2010-03-01&rft.volume=122&rft.issue=889&rft.spage=336&rft.epage=346&rft.pages=336-346&rft.issn=0004-6280&rft.eissn=1538-3873&rft.coden=PASPAU&rft_id=info:doi/10.1086/651281&rft_dat=%3Cjstor_proqu%3E10.1086/651281%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=867749469&rft_id=info:pmid/&rft_jstor_id=10.1086/651281&rfr_iscdi=true |