Noise and Bias In Square-Root Compression Schemes
We investigate data compression schemes for proposed all-sky diffraction-limited visible/NIR sky surveys aimed at the dark-energy problem. We show that lossy square-root compression to 1 bitpixel-1 pixe l - 1 of noise, followed by standard lossless compression algorithms, reduces the images to 2.5–4...
Gespeichert in:
Veröffentlicht in: | Publications of the Astronomical Society of the Pacific 2010-03, Vol.122 (889), p.336-346 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate data compression schemes for proposed all-sky diffraction-limited visible/NIR sky surveys aimed at the dark-energy problem. We show that lossy square-root compression to 1 bitpixel-1
pixe
l
-
1
of noise, followed by standard lossless compression algorithms, reduces the images to 2.5–4 bitspixel-1
pixe
l
-
1
, depending primarily upon the level of cosmic-ray contamination of the images. Compression to this level adds noise equivalent to≤ 10%
≤
10
%
penalty in observing time. We derive an analytic correction to flux biases inherent to the square-root compression scheme. Numerical tests on simple galaxy models confirm that galaxy fluxes and shapes are measured with systematic biases≲10-4
≲
10
-
4
induced by the compression scheme, well below the requirements of supernova and weak gravitational lensing dark-energy experiments. In a related investigation, Vanderveld and coworkers bound the shape biases using realistic simulated images of the high-Galactic–latitude sky. The square-root preprocessing step has advantages over simple (linear) decimation when there are many bright objects or cosmic rays in the field, or when the background level will vary. |
---|---|
ISSN: | 0004-6280 1538-3873 |
DOI: | 10.1086/651281 |