Hippocampus, amygdala and global brain changes 10 years after childhood traumatic brain injury
▶ Childhood traumatic brain injury results in brain structure changes 10-years later. ▶ Severe childhood brain injuries cause a reduction in gray and white matter. ▶ The structure of the amygdala and hippocampus is affected 10-years post-injury. ▶ Even mild and moderate injuries cause hippocampal vo...
Gespeichert in:
Veröffentlicht in: | International journal of developmental neuroscience 2011-04, Vol.29 (2), p.137-143 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ▶ Childhood traumatic brain injury results in brain structure changes 10-years later. ▶ Severe childhood brain injuries cause a reduction in gray and white matter. ▶ The structure of the amygdala and hippocampus is affected 10-years post-injury. ▶ Even mild and moderate injuries cause hippocampal volume loss in the long-term.
Traumatic brain injury (TBI) in children results in damage to the developing brain, particularly in severely injured individuals. Little is known, however, of the long-term structural aspects of the brain following childhood TBI. This study investigated the integrity of the brain 10 years post-TBI using magnetic resonance imaging volumetrics in a sample of 49 participants with mild, moderate and severe TBI, evaluated against a normative sample of 20 individuals from a pediatric database with comparable age and gender distribution. Structural integrity was investigated in gray and white matter, and by manually segmenting two regions of interest (hippocampus, amygdala), potentially vulnerable to the effects of childhood TBI. The results indicate that more severe injuries caused a reduction in gray and white brain matter, while all TBI severity levels resulted in increased volumes of cerebrospinal fluid and smaller hippocampal volumes. In addition, enlarged amygdala volumes were detected in severely injured patients compared to their mild and moderate counterparts, suggesting that childhood TBI may disrupt the development of certain brain regions through diffuse pathological changes. The findings highlight the lasting impact of childhood TBI on the brain and the importance of monitoring brain structure in the long-term after early injury. |
---|---|
ISSN: | 0736-5748 1873-474X |
DOI: | 10.1016/j.ijdevneu.2010.12.003 |