Effect of glycogen synthase kinase 3 β-mediated presenilin 1 phosphorylation on amyloid β production is negatively regulated by insulin receptor cleavage
Abstract Presenilin 1 (PS1), a causative molecule of familial Alzheimer's disease (AD), is known to be an unprimed substrate of glycogen synthase kinase 3 β (GSK3β) [Twomey and McCarthy (2006) FEBS Lett 580:4015–4020] and is phosphorylated at serine 353, 357 residues in its cytoplasmic loop reg...
Gespeichert in:
Veröffentlicht in: | Neuroscience 2011-03, Vol.177, p.298-307 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract Presenilin 1 (PS1), a causative molecule of familial Alzheimer's disease (AD), is known to be an unprimed substrate of glycogen synthase kinase 3 β (GSK3β) [Twomey and McCarthy (2006) FEBS Lett 580:4015–4020] and is phosphorylated at serine 353, 357 residues in its cytoplasmic loop region [Kirschenbaum et al. (2001) J Biol Chem 276:7366–7375]. In this report, we investigated the effect of PS1 phosphorylation on AD pathophysiology and obtained two important results—PS1 phosphorylation increased amyloid β (Aβ) 42/40 ratio, and PS1 phosphorylation was enhanced in the human AD brains. Interestingly, we demonstrated that PS1 phosphorylation promoted insulin receptor (IR) cleavage and the IR intracellular domain (IR ICD) generated by γ-secretase led to a marked transactivation of Akt (PKB), which down-regulated GSK3β activity. Thus, the cleavage of IR by γ-secretase can inhibit PS1 phosphorylation in the long run. Taken together, our findings indicate that PS1 phosphorylation at serine 353, 357 residues can play a pivotal role in the pathology of AD and that the dysregulation of this mechanism may be causally associated with its pathology. |
---|---|
ISSN: | 0306-4522 1873-7544 |
DOI: | 10.1016/j.neuroscience.2010.12.017 |