One-pot fluorescence detection of multiple analytes in homogenous solution based on noncovalent assembly of single-walled carbon nanotubes and aptamers
We have developed a new multicolor fluorescent sensing system to detect multiple analytes in one pot. This design is based on the noncovalent assembly of dye-labeled aptamer with single-walled carbon nanotubes (SWNTs) by π-stacking between the nucleotide bases and the SWNTs sidewalls. In the presenc...
Gespeichert in:
Veröffentlicht in: | Biosensors & bioelectronics 2011-04, Vol.26 (8), p.3505-3510 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We have developed a new multicolor fluorescent sensing system to detect multiple analytes in one pot. This design is based on the noncovalent assembly of dye-labeled aptamer with single-walled carbon nanotubes (SWNTs) by π-stacking between the nucleotide bases and the SWNTs sidewalls. In the presence of the targets, the aptamer–target binding separates the assembly of dye-labeled aptamers and SWNTs, resulting in the restoration of fluorescence signal of the dye labeled with aptamers. As a proof of concept, we demonstrate that a two-color fluorescent system can simultaneously and selectively detect two targets (thrombin and adenosine triphosphate) in a single solution. Since the method is mix-and-detect manner, the present strategy is simple and cost-effective. |
---|---|
ISSN: | 0956-5663 1873-4235 |
DOI: | 10.1016/j.bios.2011.01.035 |