The effect of situational variability in climate and soil, choice of animal type and N fertilisation level on nitrogen leaching from pastoral farming systems around Lake Taupo, New Zealand
► Weather variation had a marked influence on annual and temporal nitrogen leaching. ► Soil type contributed to a different temporal pattern of nitrogen leaching. ► Nitrogen leaching was greatest from beef cattle, followed by dairy cattle and sheep. Agricultural systems with grazing animals are incr...
Gespeichert in:
Veröffentlicht in: | Agricultural systems 2011-03, Vol.104 (3), p.271-280 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ► Weather variation had a marked influence on annual and temporal nitrogen leaching. ► Soil type contributed to a different temporal pattern of nitrogen leaching. ► Nitrogen leaching was greatest from beef cattle, followed by dairy cattle and sheep.
Agricultural systems with grazing animals are increasingly under scrutiny for their contribution to quality degradation of waterways and water bodies. Soil type, climate, animal type and nitrogen (N) fertilisation are contributors to the variation in N that is leached through the soil profile into ground and surface water. It is difficult to explore the effect of these factors using experimentation only and modelling is proposed as an alternative. An agro-ecosystem model, EcoMod, was used to quantify the pastoral ecosystem responses to situational variability in climate and soil, choice of animal type and N fertilisation level within the Lake Taupo region of New Zealand. Factorial combinations of soil type (Oruanui and Waipahihi), climate (low, moderate and high rainfall), animal type (sheep, beef and dairy) and N fertilisation level (0 or 60
kg
N/ha/yr) were simulated. High rainfall climates also had colder temperatures, grew less pasture and carried fewer animals overall which lead to less dung and urinary N returned. Therefore, even though a higher proportion of N returned ultimately leached at the higher rainfall sites, the total N leached did not differ greatly between sites. Weather variation between years had a marked influence on N leaching within a site, due to the timing and magnitude of rainfall events. In this region, for these two highly permeable soil types, N applied as fertiliser had a high propensity to leach, either after being taken up by plants, grazed and returned to the soil as dung and urine, or due to direct flow through the soil profile. Soil type had a considerable effect on N leaching risk, the timing of N leaching and mean pasture production. Nitrogen leaching was greatest from beef cattle, followed by dairy and sheep with the level of leaching related to urine deposition patterns for each animal type and due to the amount of N returned to the soil as excreta. Simulation results indicate that sheep farming systems with limited fertiliser N inputs will reduce N leaching from farms in the Lake Taupo catchment. |
---|---|
ISSN: | 0308-521X 1873-2267 |
DOI: | 10.1016/j.agsy.2010.11.001 |