How useful is yet another data-driven bandwidth in long-run variance estimation?: A simulation study on cointegrating regressions
This paper investigates how bandwidth choice rules in long-run variance estimation affect finite-sample performance of efficient estimators for cointegrating regression models. Monte Carlo results indicate that Hirukawa's (2010) bandwidth choice rule contributes bias reduction in the estimators...
Gespeichert in:
Veröffentlicht in: | Economics letters 2011-05, Vol.111 (2), p.170-172 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper investigates how bandwidth choice rules in long-run variance estimation affect finite-sample performance of efficient estimators for cointegrating regression models. Monte Carlo results indicate that Hirukawa's (2010) bandwidth choice rule contributes bias reduction in the estimators.
► Effects of different bandwidth formulae in HAC estimation are investigated. ► Simulations on efficient estimation in cointegrating regressions are conducted. ► Hirukawa's (2010) formula contributes bias reduction in the efficient estimators. |
---|---|
ISSN: | 0165-1765 1873-7374 |
DOI: | 10.1016/j.econlet.2011.02.006 |