Size distribution of folded chain crystal nuclei of polyethylene on active centers
Kinetic equations describing temporal evolution of the size distribution of crystalline nuclei of folded chain polyethylene on active centers are solved numerically. Basic characteristics of nucleation processes (the total number of supercritical nuclei and the size distribution of nuclei) are deter...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2011-03, Vol.134 (11), p.114904-114904-5 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Kinetic equations describing temporal evolution of the size distribution of crystalline nuclei of folded chain polyethylene on active centers are solved numerically. Basic characteristics of nucleation processes (the total number of supercritical nuclei and the size distribution of nuclei) are determined and compared with the experimental data. It is shown that even though the total number of supercritical nuclei coincides with the experimental data, the size distribution prediction fails. This is caused by the fact that the total number of nuclei (usually used in analysis of the experimental data), in contrast to the size distribution of nuclei, represents an integral quantity. Using the experimental data of the steady state size distribution of nuclei enables us to determine thermodynamic parameters (especially interfacial energies) of the studied system more precisely and consequently to correct kinetic parameters to get coincidence of kinetic model with the experimental data in both, the total number of supercritical nuclei and also the size distribution of nuclei. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.3571457 |