Biochar derived from anaerobically digested sugar beet tailings: Characterization and phosphate removal potential

Two biochars were produced from anaerobically digested and undigested sugar beet tailings through slow-pyrolysis at 600 °C. The digested sugar beet tailing biochar (DSTC) and raw sugar beet tailing biochar (STC) yields were around 45.5% and 36.3% of initial dry weight, respectively. Compared to STC,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioresource technology 2011-05, Vol.102 (10), p.6273-6278
Hauptverfasser: Yao, Ying, Gao, Bin, Inyang, Mandu, Zimmerman, Andrew R., Cao, Xinde, Pullammanappallil, Pratap, Yang, Liuyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Two biochars were produced from anaerobically digested and undigested sugar beet tailings through slow-pyrolysis at 600 °C. The digested sugar beet tailing biochar (DSTC) and raw sugar beet tailing biochar (STC) yields were around 45.5% and 36.3% of initial dry weight, respectively. Compared to STC, DSTC had similar pH and surface functional groups, but higher surface area, and its surface was less negatively charged. SEM-EDS and XRD analyses showed that colloidal and nano-sized periclase (MgO) was presented on the surface of DSTC. Laboratory adsorption experiments were conducted to assess the phosphate removal ability of the two biochars, an activated carbon (AC), and three Fe-modified biochar/AC adsorbents. The DSTC showed the highest phosphate removal ability with a removal rate around 73%. Our results suggest that anaerobically digested sugar beet tailings can be used as feedstock materials to produce high quality biochars, which could be used as adsorbents to reclaim phosphate.
ISSN:0960-8524
1873-2976
DOI:10.1016/j.biortech.2011.03.006