Effect of location, organization, and repeat-copy number in satellite-DNA evolution
Here, we analyze the evolutionary dynamics of a satellite-DNA family in an attempt to understand the effect of factors such as location, organization, and repeat-copy number in the molecular drive process leading to the concerted-evolution pattern found in this type of repetitive sequences. The pres...
Gespeichert in:
Veröffentlicht in: | Molecular genetics and genomics : MGG 2009-10, Vol.282 (4), p.395-406 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Here, we analyze the evolutionary dynamics of a satellite-DNA family in an attempt to understand the effect of factors such as location, organization, and repeat-copy number in the molecular drive process leading to the concerted-evolution pattern found in this type of repetitive sequences. The presence of RAE180 satellite-DNA in the dioecious species of the plant genus
Rumex
is a noteworthy feature at this respect, as RAE180 satellite repeats have accumulated differentially, showing a distinct distribution pattern in different species. The evolution of dioecious
Rumex
gave rise to two phylogenetic clades: one clade composed of species with an ancestral XX/XY sex chromosome system and a second, derived clade of species with a multiple sex–chromosome system XX/XY
1
Y
2
. While in the XX/XY dioecious species, the RAE180 satellite-DNA is located only in a small autosomal locus, the RAE180 repeats are present also in a small autosomal locus and additionally have been massively amplified in the Y chromosomes of XX/XY
1
Y
2
species. Here, we have found that the RAE180 repeats of the autosomal locus of XX/XY species are characterized by intra-specific sequence homogeneity and inter-specific divergence and that the comparison of individual nucleotide positions between related species shows a general pattern of concerted evolution. On the contrary, both in the autosomal and the Y-linked loci of XX/XY
1
Y
2
species, ancestral variability has remained with reduced rates of sequence homogenization and of evolution. Thus, this study demonstrates that molecular mechanisms of non-reciprocal exchange are key factors in the molecular drive process; the satellite DNAs in the non-recombining Y chromosomes show low rates of concerted evolution and intra-specific variability increase with no inter-specific divergence. By contrast, freely recombining loci undergo concerted evolution with genetic differentiation between species as occurred in the autosomal locus of XX/XY species. However, evolutionary periods of rapid sequence change might alternate with evolutionary periods of stasis with variability remaining by the reduced action of molecular mechanisms of non-reciprocal exchange as occurred in XX/XY
1
Y
2
species, which could depend on repeat-copy number and the processes involved in their amplification. |
---|---|
ISSN: | 1617-4615 1617-4623 |
DOI: | 10.1007/s00438-009-0472-4 |