Identification of appressorial and mycelial cell wall proteins and a survey of the membrane proteome of Phytophthora infestans
Proteins embedded in the cell wall and plasma membrane of filamentous oomycetes and fungi provide a means by which these organisms can interact with their local environment. However, cell wall and membrane proteins have often proved difficult to isolate using conventional proteomic techniques. Here...
Gespeichert in:
Veröffentlicht in: | Fungal biology 2010-09, Vol.114 (9), p.702-723 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Proteins embedded in the cell wall and plasma membrane of filamentous oomycetes and fungi provide a means by which these organisms can interact with their local environment. However, cell wall and membrane proteins have often proved difficult to isolate using conventional proteomic techniques. Here we have used liquid chromatography tandem mass spectrometry (LC-MS/MS) to facilitate rapid and sensitive quantification of the cell wall proteome. We report the use of LC-MS/MS to identify differentially regulated proteins from the cell walls of three different lifecycle stages of the oomycete plant pathogen
Phytophthora infestans: non-sporulating vegetative mycelium, sporulating mycelium, and germinating cysts with appressoria. We have also used quantitative real-time RT-PCR to confirm that the transcripts corresponding to some of these proteins, namely those identified in cell walls of germinating cysts with appressoria, accumulate differentially throughout the lifecycle. These proteins may, therefore, be important for pre-infective development and early pathogenicity. Up to 31 covalently and non-covalently bound cell wall-associated proteins were identified. All of the proteins identified in germinating cysts with appressoria, and several of those from mycelial fractions, were classified as putative effector or pathogen-associated molecular pattern (PAMP) molecules, including members of the CBEL family, the elicitin family, the crinkler (CRN) family and two transglutaminases. Thus, the cell wall of
P. infestans may represent an important reservoir for surface-presented, apoplastic effectors or defence activation molecules. Proteins predicted to be cell surface proteins included IPI-B like proteins, mucins, cell wall-associated enzymes and annexin family members. Additionally we identified up to 27 membrane-associated proteins from Triton X-114 phase partitioned mycelial membrane preparations, producing the first inventory of oomycete membrane-associated proteins. Four of these proteins are small Rab-type G-proteins and several are associated with secretion. |
---|---|
ISSN: | 1878-6146 1878-6162 |
DOI: | 10.1016/j.funbio.2010.06.003 |