Arabidopsis Botrytis Susceptible1 Interactor Defines a Subclass of RING E3 Ligases That Regulate Pathogen and Stress Responses

We studied the function of Arabidopsis (Arabidopsis thaliana) Botrytis Susceptible1 Interactor (BOI) in plant responses to pathogen infection and abiotic stress. BOI physically interacts with and ubiquitinates Arabidopsis BOS1, an R2R3MYB transcription factor previously implicated in stress and path...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2010-12, Vol.154 (4), p.1766-1782
Hauptverfasser: Luo, Hongli, Laluk, Kristin, Lai, Zhibing, Veronese, Paola, Song, Fengming, Mengiste, Tesfaye
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We studied the function of Arabidopsis (Arabidopsis thaliana) Botrytis Susceptible1 Interactor (BOI) in plant responses to pathogen infection and abiotic stress. BOI physically interacts with and ubiquitinates Arabidopsis BOS1, an R2R3MYB transcription factor previously implicated in stress and pathogen responses. In transgenic plants expressing the BOS1-β-glucuronidase transgene, β-glucuronidase activity could be detected only after inhibition of the proteosome, suggesting that BOS1 is a target of ubiquitin-mediated degradation by the proteosome. Plants with reduced BOI transcript levels generated through RNA interference (BOI RNAi) were more susceptible to the necrotrophic fungus Botrytis cinerea and less tolerant to salt stress. In addition, BOI RNAi plants exhibited increased cell death induced by the phytotoxin α-picolinic acid and by a virulent strain of the bacterial pathogen Pseudomonas syringae, coincident with peak disease symptoms. However, the hypersensitive cell death associated with different race-specific resistance genes was unaffected by changes in the level of BOI transcript. BOI expression was enhanced by B. cinerea and salt stress but repressed by the plant hormone gibberellin, indicating a complex regulation of BOI gene expression. Interestingly, BOI RNAi plants exhibit reduced growth responsiveness to gibberellin. We also present data revealing the function of three Arabidopsis BOI-RELATED GENES (BRGs), which contribute to B. cinerea resistance and the suppression of disease-associated cell death. In sum, BOI and BRGs represent a subclass of RING E3 ligases that contribute to plant disease resistance and abiotic stress tolerance through the suppression of pathogen-induced as well as stress-induced cell death.
ISSN:0032-0889
1532-2548
1532-2548
DOI:10.1104/pp.110.163915