Coincidence detection in single dendritic spines mediated by calcium release

Cerebellar long-term depression (LTD) is a calcium-dependent process in which coincident activity of parallel fiber (PF) and climbing fiber (CF) synapses causes a long-lasting decrease in PF synaptic strength onto Purkinje cells. Here we show that pairing CF activation with bursts of PF activity tri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature neuroscience 2000-12, Vol.3 (12), p.1266-1273
Hauptverfasser: Wang, Samuel S.-H., Denk, Winfried, Häusser, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cerebellar long-term depression (LTD) is a calcium-dependent process in which coincident activity of parallel fiber (PF) and climbing fiber (CF) synapses causes a long-lasting decrease in PF synaptic strength onto Purkinje cells. Here we show that pairing CF activation with bursts of PF activity triggers large (>10 μM) calcium signals in Purkinje cell dendrites. When PFs are densely activated, signals span whole dendritic branchlets and are mediated by voltage-dependent calcium entry. When PFs are sparsely activated, however, signals are restricted to single spines and blocked by metabotropic glutamate receptor antagonists. Single-spine signals and sparse-stimulation LTD are also blocked by thapsigargin, indicating that calcium must be released from stores. Single-spine signals and sparse-stimulation LTD are greatest when PF activation precedes the CF activation within 50–200 ms. This timing rule matches the properties of several forms of motor learning, providing a link between behavior and functional properties of cerebellar synaptic plasticity.
ISSN:1097-6256
1546-1726
DOI:10.1038/81792