Nucleotide-sugar transporter SLC35D1 is critical to chondroitin sulfate synthesis in cartilage and skeletal development in mouse and human
Proteoglycans are a family of extracellular macromolecules comprised of glycosaminoglycan chains of a repeated disaccharide linked to a central core protein 1 , 2 . Proteoglycans have critical roles in chondrogenesis and skeletal development. The glycosaminoglycan chains found in cartilage proteogly...
Gespeichert in:
Veröffentlicht in: | Nature medicine 2007-11, Vol.13 (11), p.1363-1367 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Proteoglycans are a family of extracellular macromolecules comprised of glycosaminoglycan chains of a repeated disaccharide linked to a central core protein
1
,
2
. Proteoglycans have critical roles in chondrogenesis and skeletal development. The glycosaminoglycan chains found in cartilage proteoglycans are primarily composed of chondroitin sulfate
3
. The integrity of chondroitin sulfate chains is important to cartilage proteoglycan function; however, chondroitin sulfate metabolism in mammals remains poorly understood. The solute carrier-35 D1 (SLC35D1) gene (
SLC35D1)
encodes an endoplasmic reticulum nucleotide-sugar transporter (NST) that might transport substrates needed for chondroitin sulfate biosynthesis
4
,
5
. Here we created
Slc35d1
-deficient mice that develop a lethal form of skeletal dysplasia with severe shortening of limbs and facial structures. Epiphyseal cartilage in homozygous mutant mice showed a decreased proliferating zone with round chondrocytes, scarce matrices and reduced proteoglycan aggregates. These mice had short, sparse chondroitin sulfate chains caused by a defect in chondroitin sulfate biosynthesis. We also identified that loss-of-function mutations in human
SLC35D1
cause Schneckenbecken dysplasia, a severe skeletal dysplasia. Our findings highlight the crucial role of NSTs in proteoglycan function and cartilage metabolism, thus revealing a new paradigm for skeletal disease and glycobiology. |
---|---|
ISSN: | 1078-8956 1546-170X |
DOI: | 10.1038/nm1655 |