Isotope effects in liquid water by infrared spectroscopy. V. A sea of OH4 of C2v symmetry
The two water gas OH stretch vibrations that absorb in the infrared (IR) near 3700 cm(-1) are redshifted to near 3300 cm(-1) upon liquefaction. The bathochromic shift is due to the formation of four H-bonds: two are from the labile hydrogen atoms to neighbors and two are received from neighbors by t...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2011-04, Vol.134 (16), p.164502-164502 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The two water gas OH stretch vibrations that absorb in the infrared (IR) near 3700 cm(-1) are redshifted to near 3300 cm(-1) upon liquefaction. The bathochromic shift is due to the formation of four H-bonds: two are from the labile hydrogen atoms to neighbors and two are received from neighbors by the oxygen free electron pairs. Therefore, the water oxygen atom is surrounded by four hydrogen atoms, two of these make covalent bonds that make H-bonds and two are oxygen H-bonded. However, these permute at rate in the ps range. When the water molecules are isolated in acetonitrile (MeCN) or acetone (Me(2)CO), only the labile hydrogen atoms make H-bonds with the solvent. The bathochromic shift of the OH stretch bands is then almost 130 cm(-1) with, however, the asymmetric (ν(3)) and symmetric (ν(1)) stretch bands maintained. When more water is added to the solutions, the oxygen lone doublets make H-bonds with the available labile hydrogen atoms from neighboring water molecules. With one bond accepted, the bathochromic shift is further displaced by almost 170 cm(-1). When the second oxygen doublet is filled, another bathochromic shift by almost 100 cm(-1) is observed. The total bathochromic shift is near 400 cm(-1) with a full width at half height of near 400 cm(1). This is the case of pure liquid water. Notwithstanding the shift and the band broadness, the ν(3) and ν(1) band individualities are maintained with, however, added satellite companions that come from the far IR (FIR) absorption. These added to the fundamental bands are responsible for the band broadness and almost featureless shape of the massive OH stretch absorption of liquid water. Comparison of light and heavy water mixture spectra indicates that the OH and OD stretch regions show five different configurations: OH(4); OH(3)D; OH(2)D(2); OHD(3); and OD(4) [J. Chem. Phys. 116, 4626 (2002)]. The comparison of the OH bands of OH(4) with that of OHD(3) indicates that the main component in OHD(3) is ν(OH), whereas in OH(4) two main components are present: ν(3) and ν(1). Similar results are obtained for the OD bands of OD(4) and ODH(3). These results indicate that the C(2) (v) symmetry of H(2)O and D(2)O is preserved in the liquid and aqueous solutions whereas C(s) is that of HDO. |
---|---|
ISSN: | 1089-7690 |
DOI: | 10.1063/1.3581035 |