Reduction of temperature fluctuation within low temperature region using a cryocooler

Modeling and experiments are performed to decrease temperature fluctuation generated by the periodic motion of the displacer in a Gifford-McMahon (GM) type cryocooler within the low-temperature region. The one-dimensional heat equation allows us to show that thermal diffusivity is an essential facto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2011-04, Vol.82 (4), p.044903-044903-4
Hauptverfasser: Nakamura, Daiki, Hasegawa, Yasuhiro, Murata, Masayuki, Yamamoto, Hiroya, Tsunemi, Fumiaki, Komine, Takashi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Modeling and experiments are performed to decrease temperature fluctuation generated by the periodic motion of the displacer in a Gifford-McMahon (GM) type cryocooler within the low-temperature region. The one-dimensional heat equation allows us to show that thermal diffusivity is an essential factor to achieve much smaller temperature fluctuation, and fiber-reinforced plastic (FRP) with low thermal diffusivity makes it possible to reduce the temperature fluctuation dramatically. Based on the model, experiments are performed to vary the thickness of two FRP dampers, on the cryohead of the cryocooler and on the sample stage. As a result, the FRP dampers enable us to achieve the temperature fluctuations of only 0.7 mK, corresponding to a standard deviation of 0.25 mK, when the sample stage is maintained at 4.2000 K, even if a GM cryocooler is utilized for cooling the temperature, which introduces an initial temperature fluctuation of 282 mK at the cryohead.
ISSN:0034-6748
1089-7623
DOI:10.1063/1.3581211