A combined approach of experiments and computational docking simulation to the Coprinus cinereus peroxidase-catalyzed oxidative polymerization of alkyl phenols

The characteristics of the oxidative polymerization of alkyl phenol derivatives catalyzed by Coprinus cinereus peroxidase (CIP) were studied qualitatively and quantitatively using a combined approach of experiments and computational docking simulations. As determined by docking study of CIP and alky...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioresource technology 2011-04, Vol.102 (7), p.4901-4904
Hauptverfasser: Park, Jong Chul, Joo, Jeong Chan, An, Eun Suk, Song, Bong Keun, Kim, Yong Hwan, Yoo, Young Je
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The characteristics of the oxidative polymerization of alkyl phenol derivatives catalyzed by Coprinus cinereus peroxidase (CIP) were studied qualitatively and quantitatively using a combined approach of experiments and computational docking simulations. As determined by docking study of CIP and alkyl phenols, the binding interaction was found to be important for the determination of substrate specificity. The distant binding and indirect orientation of o-isopropyl phenol and o-tertiary butyl phenol to the catalytic residue (56His) could explain the inability of CIP to polymerize these substrates. Three hydrophobic residues (156Pro, 192Leu, and 230Phe) at the entrance of the binding pocket were also found to be crucial in binding and orientation of alkyl phenols. A two-parameter QSAR equation with the binding distance and the molecular volume of the substrates was proposed and the polymerization yield was accurately predicted by two-parameter QSAR equation.
ISSN:0960-8524
1873-2976
DOI:10.1016/j.biortech.2010.12.021