Notes on lattice points of zonotopes and lattice-face polytopes

Minkowski’s second theorem on successive minima gives an upper bound on the volume of a convex body in terms of its successive minima. We study the problem to generalize Minkowski’s bound by replacing the volume by the lattice point enumerator of a convex body. In this context we are interested in b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete mathematics 2011-05, Vol.311 (8), p.634-644
Hauptverfasser: Bey, Christian, Henk, Martin, Henze, Matthias, Linke, Eva
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Minkowski’s second theorem on successive minima gives an upper bound on the volume of a convex body in terms of its successive minima. We study the problem to generalize Minkowski’s bound by replacing the volume by the lattice point enumerator of a convex body. In this context we are interested in bounds on the coefficients of Ehrhart polynomials of lattice polytopes via the successive minima. Our results for lattice zonotopes and lattice-face polytopes imply, in particular, that for 0-symmetric lattice-face polytopes and lattice parallelepipeds the volume can be replaced by the lattice point enumerator.
ISSN:0012-365X
1872-681X
DOI:10.1016/j.disc.2011.01.006