First-Fit coloring of bounded tolerance graphs

Let G = ( V , E ) be a graph. A tolerance representation of G is a set I = { I v : v ∈ V } of intervals and a set t = { t v : v ∈ V } of nonnegative reals such that x y ∈ E iff I x ∩ I y ≠ 0̸ and ‖ I x ∩ I y ‖ ≥ min { t x , t y } ; in this case G is a tolerance graph. We refine this definition by sa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics 2011-04, Vol.159 (7), p.605-611
Hauptverfasser: Kierstead, H.A., Saoub, Karin R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 611
container_issue 7
container_start_page 605
container_title Discrete Applied Mathematics
container_volume 159
creator Kierstead, H.A.
Saoub, Karin R.
description Let G = ( V , E ) be a graph. A tolerance representation of G is a set I = { I v : v ∈ V } of intervals and a set t = { t v : v ∈ V } of nonnegative reals such that x y ∈ E iff I x ∩ I y ≠ 0̸ and ‖ I x ∩ I y ‖ ≥ min { t x , t y } ; in this case G is a tolerance graph. We refine this definition by saying that G is a p -tolerance graph if t v / | I v | ≤ p for all v ∈ V . A Grundy coloring g of G is a proper coloring of V with positive integers such that for every positive integer i , if i < g ( v ) then v has a neighbor u with g ( u ) = i . The Grundy number Γ ( G ) of G is the maximum integer k such that G has a Grundy coloring using k colors. It is also called the First-Fit chromatic number. For fixed 0 ≤ p < 1 we prove that if G is a p -tolerance graph then, Γ ( G ) = Θ ( ω ( G ) 1 − p ) , and in particular, Γ ( G ) ≤ 8 ⌈ 1 1 − p ⌉ ω ( G ) . Also, we show how restricting p forbids induced copies of K s , s . Finally, we observe that there exist 1-tolerance graphs G with ω ( G ) = 2 and arbitrarily large Grundy number.
doi_str_mv 10.1016/j.dam.2010.05.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_864443051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X10001617</els_id><sourcerecordid>864443051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-bb3018500255488dce5e5e405b8b1f03af018d95a0b7b3768f81a6df27d329933</originalsourceid><addsrcrecordid>eNp9UE1LAzEUDKJgrf4Ab3vztOt7m81uiicptgoFLwreQj5rynZTk13Bf29KPcs7PIY385gZQm4RKgRs73eVkfuqhoyBVQD1GZkh7-qy7To8J7PMacsa-ccluUppBwCY0YxUKx_TWK78WOjQh-iHbRFcocI0GGuKMfQ2ykHbYhvl4TNdkwsn-2Rv_vacvK-e3pbP5eZ1_bJ83JS6oXwslaKAnGUbjDWcG21ZngaY4godUOny2SyYBNUp2rXccZStcXVnaL1YUDond6e_hxi-JptGsfdJ276Xgw1TErxtmoYCw8zEE1PHkFK0Thyi38v4IxDEsRqxE7kacaxGABPZU9Y8nDQ2R_j2Noqkvc0pjY9Wj8IE_4_6FwMdaio</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864443051</pqid></control><display><type>article</type><title>First-Fit coloring of bounded tolerance graphs</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kierstead, H.A. ; Saoub, Karin R.</creator><creatorcontrib>Kierstead, H.A. ; Saoub, Karin R.</creatorcontrib><description>Let G = ( V , E ) be a graph. A tolerance representation of G is a set I = { I v : v ∈ V } of intervals and a set t = { t v : v ∈ V } of nonnegative reals such that x y ∈ E iff I x ∩ I y ≠ 0̸ and ‖ I x ∩ I y ‖ ≥ min { t x , t y } ; in this case G is a tolerance graph. We refine this definition by saying that G is a p -tolerance graph if t v / | I v | ≤ p for all v ∈ V . A Grundy coloring g of G is a proper coloring of V with positive integers such that for every positive integer i , if i &lt; g ( v ) then v has a neighbor u with g ( u ) = i . The Grundy number Γ ( G ) of G is the maximum integer k such that G has a Grundy coloring using k colors. It is also called the First-Fit chromatic number. For fixed 0 ≤ p &lt; 1 we prove that if G is a p -tolerance graph then, Γ ( G ) = Θ ( ω ( G ) 1 − p ) , and in particular, Γ ( G ) ≤ 8 ⌈ 1 1 − p ⌉ ω ( G ) . Also, we show how restricting p forbids induced copies of K s , s . Finally, we observe that there exist 1-tolerance graphs G with ω ( G ) = 2 and arbitrarily large Grundy number.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2010.05.002</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Coloring ; First-Fit ; Graphs ; Grundy number ; Intervals ; Mathematical analysis ; Representations ; Tolerance graph ; Tolerances</subject><ispartof>Discrete Applied Mathematics, 2011-04, Vol.159 (7), p.605-611</ispartof><rights>2010 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-bb3018500255488dce5e5e405b8b1f03af018d95a0b7b3768f81a6df27d329933</citedby><cites>FETCH-LOGICAL-c438t-bb3018500255488dce5e5e405b8b1f03af018d95a0b7b3768f81a6df27d329933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0166218X10001617$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Kierstead, H.A.</creatorcontrib><creatorcontrib>Saoub, Karin R.</creatorcontrib><title>First-Fit coloring of bounded tolerance graphs</title><title>Discrete Applied Mathematics</title><description>Let G = ( V , E ) be a graph. A tolerance representation of G is a set I = { I v : v ∈ V } of intervals and a set t = { t v : v ∈ V } of nonnegative reals such that x y ∈ E iff I x ∩ I y ≠ 0̸ and ‖ I x ∩ I y ‖ ≥ min { t x , t y } ; in this case G is a tolerance graph. We refine this definition by saying that G is a p -tolerance graph if t v / | I v | ≤ p for all v ∈ V . A Grundy coloring g of G is a proper coloring of V with positive integers such that for every positive integer i , if i &lt; g ( v ) then v has a neighbor u with g ( u ) = i . The Grundy number Γ ( G ) of G is the maximum integer k such that G has a Grundy coloring using k colors. It is also called the First-Fit chromatic number. For fixed 0 ≤ p &lt; 1 we prove that if G is a p -tolerance graph then, Γ ( G ) = Θ ( ω ( G ) 1 − p ) , and in particular, Γ ( G ) ≤ 8 ⌈ 1 1 − p ⌉ ω ( G ) . Also, we show how restricting p forbids induced copies of K s , s . Finally, we observe that there exist 1-tolerance graphs G with ω ( G ) = 2 and arbitrarily large Grundy number.</description><subject>Coloring</subject><subject>First-Fit</subject><subject>Graphs</subject><subject>Grundy number</subject><subject>Intervals</subject><subject>Mathematical analysis</subject><subject>Representations</subject><subject>Tolerance graph</subject><subject>Tolerances</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEUDKJgrf4Ab3vztOt7m81uiicptgoFLwreQj5rynZTk13Bf29KPcs7PIY385gZQm4RKgRs73eVkfuqhoyBVQD1GZkh7-qy7To8J7PMacsa-ccluUppBwCY0YxUKx_TWK78WOjQh-iHbRFcocI0GGuKMfQ2ykHbYhvl4TNdkwsn-2Rv_vacvK-e3pbP5eZ1_bJ83JS6oXwslaKAnGUbjDWcG21ZngaY4godUOny2SyYBNUp2rXccZStcXVnaL1YUDond6e_hxi-JptGsfdJ276Xgw1TErxtmoYCw8zEE1PHkFK0Thyi38v4IxDEsRqxE7kacaxGABPZU9Y8nDQ2R_j2Noqkvc0pjY9Wj8IE_4_6FwMdaio</recordid><startdate>20110406</startdate><enddate>20110406</enddate><creator>Kierstead, H.A.</creator><creator>Saoub, Karin R.</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110406</creationdate><title>First-Fit coloring of bounded tolerance graphs</title><author>Kierstead, H.A. ; Saoub, Karin R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-bb3018500255488dce5e5e405b8b1f03af018d95a0b7b3768f81a6df27d329933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Coloring</topic><topic>First-Fit</topic><topic>Graphs</topic><topic>Grundy number</topic><topic>Intervals</topic><topic>Mathematical analysis</topic><topic>Representations</topic><topic>Tolerance graph</topic><topic>Tolerances</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kierstead, H.A.</creatorcontrib><creatorcontrib>Saoub, Karin R.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kierstead, H.A.</au><au>Saoub, Karin R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First-Fit coloring of bounded tolerance graphs</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2011-04-06</date><risdate>2011</risdate><volume>159</volume><issue>7</issue><spage>605</spage><epage>611</epage><pages>605-611</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>Let G = ( V , E ) be a graph. A tolerance representation of G is a set I = { I v : v ∈ V } of intervals and a set t = { t v : v ∈ V } of nonnegative reals such that x y ∈ E iff I x ∩ I y ≠ 0̸ and ‖ I x ∩ I y ‖ ≥ min { t x , t y } ; in this case G is a tolerance graph. We refine this definition by saying that G is a p -tolerance graph if t v / | I v | ≤ p for all v ∈ V . A Grundy coloring g of G is a proper coloring of V with positive integers such that for every positive integer i , if i &lt; g ( v ) then v has a neighbor u with g ( u ) = i . The Grundy number Γ ( G ) of G is the maximum integer k such that G has a Grundy coloring using k colors. It is also called the First-Fit chromatic number. For fixed 0 ≤ p &lt; 1 we prove that if G is a p -tolerance graph then, Γ ( G ) = Θ ( ω ( G ) 1 − p ) , and in particular, Γ ( G ) ≤ 8 ⌈ 1 1 − p ⌉ ω ( G ) . Also, we show how restricting p forbids induced copies of K s , s . Finally, we observe that there exist 1-tolerance graphs G with ω ( G ) = 2 and arbitrarily large Grundy number.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2010.05.002</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0166-218X
ispartof Discrete Applied Mathematics, 2011-04, Vol.159 (7), p.605-611
issn 0166-218X
1872-6771
language eng
recordid cdi_proquest_miscellaneous_864443051
source Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Coloring
First-Fit
Graphs
Grundy number
Intervals
Mathematical analysis
Representations
Tolerance graph
Tolerances
title First-Fit coloring of bounded tolerance graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T05%3A26%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First-Fit%20coloring%20of%20bounded%20tolerance%20graphs&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Kierstead,%20H.A.&rft.date=2011-04-06&rft.volume=159&rft.issue=7&rft.spage=605&rft.epage=611&rft.pages=605-611&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2010.05.002&rft_dat=%3Cproquest_cross%3E864443051%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864443051&rft_id=info:pmid/&rft_els_id=S0166218X10001617&rfr_iscdi=true