First-Fit coloring of bounded tolerance graphs
Let G = ( V , E ) be a graph. A tolerance representation of G is a set I = { I v : v ∈ V } of intervals and a set t = { t v : v ∈ V } of nonnegative reals such that x y ∈ E iff I x ∩ I y ≠ 0̸ and ‖ I x ∩ I y ‖ ≥ min { t x , t y } ; in this case G is a tolerance graph. We refine this definition by sa...
Gespeichert in:
Veröffentlicht in: | Discrete Applied Mathematics 2011-04, Vol.159 (7), p.605-611 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
G
=
(
V
,
E
)
be a graph. A tolerance representation of
G
is a set
I
=
{
I
v
:
v
∈
V
}
of intervals and a set
t
=
{
t
v
:
v
∈
V
}
of nonnegative reals such that
x
y
∈
E
iff
I
x
∩
I
y
≠
0̸
and
‖
I
x
∩
I
y
‖
≥
min
{
t
x
,
t
y
}
; in this case
G
is a tolerance graph. We refine this definition by saying that
G
is a
p
-tolerance graph if
t
v
/
|
I
v
|
≤
p
for all
v
∈
V
.
A Grundy coloring
g
of
G
is a proper coloring of
V
with positive integers such that for every positive integer
i
, if
i
<
g
(
v
)
then
v
has a neighbor
u
with
g
(
u
)
=
i
. The Grundy number
Γ
(
G
)
of
G
is the maximum integer
k
such that
G
has a Grundy coloring using
k
colors. It is also called the First-Fit chromatic number.
For fixed
0
≤
p
<
1
we prove that if
G
is a
p
-tolerance graph then,
Γ
(
G
)
=
Θ
(
ω
(
G
)
1
−
p
)
, and in particular,
Γ
(
G
)
≤
8
⌈
1
1
−
p
⌉
ω
(
G
)
. Also, we show how restricting
p
forbids induced copies of
K
s
,
s
. Finally, we observe that there exist 1-tolerance graphs
G
with
ω
(
G
)
=
2
and arbitrarily large Grundy number. |
---|---|
ISSN: | 0166-218X 1872-6771 |
DOI: | 10.1016/j.dam.2010.05.002 |