Activity of alumina-silica-supported NiMoS prepared by controlled mixing of alumina into SiO sub(2) hydrogels for HDS of gas oil
Alumina-silica-supported NiMoS composites were examined in single- and dual-layer catalyst beds in a high-pressure (5 MPa) flow reactor to achieve ultra low sulfur (10 ppm) diesel fuels. Three types of alumina-silica composite supports were prepared by co-precipitation to control the particle size a...
Gespeichert in:
Veröffentlicht in: | Fuel processing technology 2011-05, Vol.92 (5), p.1012-1018 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Alumina-silica-supported NiMoS composites were examined in single- and dual-layer catalyst beds in a high-pressure (5 MPa) flow reactor to achieve ultra low sulfur (10 ppm) diesel fuels. Three types of alumina-silica composite supports were prepared by co-precipitation to control the particle size and arrangement of alumina and silica. The SiO sub(2) content was found to be influential on catalytic performance, being best by around 27% regardless of preparation conditions. Alumina crystal size controlled the acidity and surface area of the support, key factors influencing catalytic performance. NiMoASA-2(27), prepared by procedure 2, achieved 4.5 and 3 ppm S at 345 and 360 [deg]C, respectively, in the single bed reactor at a liquid hourly space velocity (LHSV) of 1 h[super]- 1. NiMoASA-2(27) achieved the best performance of the supports examined in this study. The double-layer catalyst bed contained commercial CoMoS (LX6) and NiMoASA-2(27) in the first and the second beds at 345 and 360 [deg]C, respectively, and achieved 5 and 2 ppm S, indicating better performance at higher temperatures. The reaction order for the hydrodesulfurization (HDS) of refractory sulfur species was close to unity over NiMoASA-2(27), which was significantly higher than that of the commercial CoMoS catalyst. Alumina-silica-supported NiMoS in the second bed of the dual-layer catalyst bed achieved less than 10 ppm S for refractory sulfur species with around 500 ppm S. |
---|---|
ISSN: | 0378-3820 |
DOI: | 10.1016/j.fuproc.2010.12.024 |