Satellite image retrieval using low memory locality sensitive hashing in Euclidean space

This paper presents the use of the Low Memory Locality Sensitive Hashing (LMLSH) technique operating in Euclidean space to build a data structure for the Defense Meteorological Satellite Program (DMSP) satellite imagery database. The LMLSH technique finds satellite image matches in sublinear search...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Earth science informatics 2011-03, Vol.4 (1), p.17-28
Hauptverfasser: Buaba, Ruben, Homaifar, Abdollah, Gebril, Mohamed, Kihn, Eric, Zhizhin, Mikhail
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents the use of the Low Memory Locality Sensitive Hashing (LMLSH) technique operating in Euclidean space to build a data structure for the Defense Meteorological Satellite Program (DMSP) satellite imagery database. The LMLSH technique finds satellite image matches in sublinear search time. The texture feature vectors of the images are extracted using pyramid-structured wavelet transform coupled with Gaussian central moment technique. These feature vectors and families of hash functions, drawn randomly and independently from a Gaussian distribution, are used to build hash tables. Given a query, the hash tables are used to pull out the best matches to that query and this is done in a sublinear search time complexity. When tested, our algorithm has proven to be approximately twenty six times faster than the Linear Search (LS) algorithm. In addition, the LMLSH algorithm searches about two percent of the entire database randomly to find the possible matches to any given query without loss of accuracy compared to the absolute best matches returned by its LS counterpart.
ISSN:1865-0473
1865-0481
DOI:10.1007/s12145-010-0076-x