On cone metric spaces: A survey
Using an old M. Krein’s result and a result concerning symmetric spaces from [S. Radenović, Z. Kadelburg, Quasi-contractions on symmetric and cone symmetric spaces, Banach J. Math. Anal. 5 (1) (2011), 38–50], we show in a very short way that all fixed point results in cone metric spaces obtained rec...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2011-04, Vol.74 (7), p.2591-2601 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Using an old M. Krein’s result and a result concerning symmetric spaces from [S. Radenović, Z. Kadelburg, Quasi-contractions on symmetric and cone symmetric spaces, Banach J. Math. Anal. 5 (1) (2011), 38–50], we show in a very short way that all fixed point results in cone metric spaces obtained recently, in which the assumption that the underlying cone is normal and solid is present, can be reduced to the corresponding results in metric spaces. On the other hand, when we deal with non-normal solid cones, this is not possible. In the recent paper [M.A. Khamsi, Remarks on cone metric spaces and fixed point theorems of contractive mappings, Fixed Point Theory Appl. 2010, 7 pages, Article ID 315398, doi:10.1115/2010/315398] the author claims that most of the cone fixed point results are merely copies of the classical ones and that any extension of known fixed point results to cone metric spaces is redundant; also that underlying Banach space and the associated cone subset are not necessary. In fact, Khamsi’s approach includes a small class of results and is very limited since it requires only normal cones, so that all results with non-normal cones (which are proper extensions of the corresponding results for metric spaces) cannot be dealt with by his approach. |
---|---|
ISSN: | 0362-546X 1873-5215 |
DOI: | 10.1016/j.na.2010.12.014 |