Biophysical Characterization of an Ensemble of Intramolecular i-Motifs Formed by the Human c-MYC NHE III sub(1 P1 Promoter Mutant Sequence)

i-Motif-forming sequences are present in or near the regulatory regions of >40% of all genes, including known oncogenes. We report here the results of a biophysical characterization and computational study of an ensemble of intramolecular i-motifs that model the polypyrimidine sequence in the hum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2010-07, Vol.99 (2), p.561-567
Hauptverfasser: Dettler, Jamie M, Buscaglia, Robert, Cui, JingJing, Cashman, Derek, Blynn, Meredith, Lewis, Edwin A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:i-Motif-forming sequences are present in or near the regulatory regions of >40% of all genes, including known oncogenes. We report here the results of a biophysical characterization and computational study of an ensemble of intramolecular i-motifs that model the polypyrimidine sequence in the human c-MYC P1 promoter. Circular dichroism results demonstrate that the mutant sequence (5'-CTT TCC TAC CCTCCC TAC CCT AA-3') can adopt multiple "i-motif-like," classical i-motif, and single-stranded structures as a function of pH. The classical i-motif structures are predominant in the pH range 4.2-5.2. The "i-motif-like" and single-stranded structures are the most significant species in solution at pH higher and lower, respectively, than that range. Differential scanning calorimetry results demonstrate an equilibrium mixture of at least three i-motif folded conformations with T sub(m values of 38.1, 46.6, and 49.5[deg]C at pH 5.0. The proposed ensemble of three folded conformations includes the three lowest-energy conformations obtained by computational modeling and two folded conformers that were proposed in a previous NMR study. The NMR study did not report the most stable conformer found in this study.)
ISSN:0006-3495
DOI:10.1016/j.bpj.2010.04.042