Comparing different approaches to characterization of focused X-ray laser beams
X-ray lasers represent a powerful tool to explore matter under extreme conditions. A rigorous characterization of their output parameters is, therefore, of substantial importance for the purposes of the experiments being conducted at these sources. A profound knowledge of the spatial, temporal, spec...
Gespeichert in:
Veröffentlicht in: | Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2011-03, Vol.631 (1), p.130-133 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | X-ray lasers represent a powerful tool to explore matter under extreme conditions. A rigorous characterization of their output parameters is, therefore, of substantial importance for the purposes of the experiments being conducted at these sources. A profound knowledge of the spatial, temporal, spectral, statistical, coherence, and wavefront beam properties may protect us from an unwanted misinterpretation of the experimental data. We present an experimental technique of the spatial (transverse and longitudinal) characterization of the beam profile. Investigating ablative imprints in various materials, we evaluate the spatial properties of the incident beam, namely, the beam waist radius and position, the Rayleigh range,
M
2 parameter, and divergence. In this paper, we recall briefly our recent work at the transverse beam profile reconstruction. A newly developed method of the longitudinal beam profile characterization is the main subject of this work. |
---|---|
ISSN: | 0168-9002 1872-9576 |
DOI: | 10.1016/j.nima.2010.12.040 |