Preliminary evaluation of the in vitro cytotoxicity of PMMA-co-EHA bone cement

This work reports a preliminary in vitro cytotoxicity assessment of new poly (methyl methacrylate)-co-ethyl hexylacrylate (PMMA-co-EHA) bone cement by evaluating the effect of its leachables on the viability of human osteoblast-like cells (MG63 line) and their progression through the cell cycle. MG6...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials Science and Engineering C: Biomimetic and Supramolecular Systems 2011-04, Vol.31 (3), p.658-662
Hauptverfasser: Almeida, T., Leite Ferreira, B.J.M., Loureiro, J., Correia, R.N., Santos, C.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work reports a preliminary in vitro cytotoxicity assessment of new poly (methyl methacrylate)-co-ethyl hexylacrylate (PMMA-co-EHA) bone cement by evaluating the effect of its leachables on the viability of human osteoblast-like cells (MG63 line) and their progression through the cell cycle. MG63 cells were exposed to 72h-extract dilutions of PMMA-co-EHA and their viability was tested using the 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay. Also, putative changes in the progression of cells through the cell cycle were monitored using flow cytometry. For that the relative nuclear DNA content and the ratio of cells at G1:S:G2 stages of the cell cycle were measured after three exposure periods (24, 48 and 72h). The obtained results revealed a dose-dependent influence of the cement extract in MG63 cell metabolism when compared to cells cultivated in a culture medium only. The MTT assay showed that a moderate number of cells died after exposure to the most concentrated extract. The cell cycle analysis revealed that leachables of PMMA-co-EHA led to significant changes in cellular proliferation, with cells exposed for 48h to the most concentrated extract being arrested in the S phase of the cell cycle. However, despite the initial period of cytotoxicity, the obtained results suggest that after 72h of exposure, the surviving cells are able to recover from this arresting condition and continue to proliferate. Therefore, this preliminary study indicates that, at the biological level, PMMA-co-EHA may have potential of being used as a bone cement matrix. However, a more detailed research work is needed to fully understand the factors responsible for the initial cytotoxicity observed.
ISSN:0928-4931
DOI:10.1016/j.msec.2010.12.020