Exact solution of catalyst inhibition problems: Application to hydrodesulfurization for clean fuel production
In catalyst development, a targeted reaction often is inhibited by a strongly adsorbed species. To help develop mitigation means, it is important to quantitatively relate the inhibition dynamics to catalyst properties. The present study develops a combined modeling and experimental approach to addre...
Gespeichert in:
Veröffentlicht in: | Chemical engineering science 2011-03, Vol.66 (6), p.1060-1068 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In catalyst development, a targeted reaction often is inhibited by a strongly adsorbed species. To help develop mitigation means, it is important to quantitatively relate the inhibition dynamics to catalyst properties. The present study develops a combined modeling and experimental approach to address this problem. A general mathematical model consisting of three nonlinear partial differential equations is reduced to quadratures or two first-order ordinary differential equations. The result is a simple parameter estimation method, which is used for kinetic characterization of an unsupported CoMo sulfide catalyst for desulfurizing 4,6-diethyldibenzothiophene with 3-ethylcarbazole as the inhibitor. The active site densities and adsorption-reaction rate constants are determined from modeling of transient response experiments. The unsupported CoMo catalyst has a higher hydrodesulfurization turnover frequency than a commercial sulfided Co
z
Mo/Al
2O
3–SiO
2 catalyst in the absence of 3-ethylcarbazole. However, the unsupported CoMo sulfide is about three times less resilient to 3-ethylcarbazole inhibition than the Co
z
Mo/Al
2O
3–SiO
2 catalyst. |
---|---|
ISSN: | 0009-2509 1873-4405 |
DOI: | 10.1016/j.ces.2010.12.003 |