Total overlapping Schwarz' preconditioners for elliptic problems

A variant of the Total Overlapping Schwarz (TOS) method has been introduced in [Ben Belgacem et al., C. R. Acad. Sci., Sér. 1 Math. 336 (2003) 277–282] as an iterative algorithm to approximate the absorbing boundary condition, in unbounded domains. That same method turns to be an efficient tool to m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ESAIM. Mathematical modelling and numerical analysis 2011-01, Vol.45 (1), p.91-113
Hauptverfasser: Ben Belgacem, Faker, Gmati, Nabil, Jelassi, Faten
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A variant of the Total Overlapping Schwarz (TOS) method has been introduced in [Ben Belgacem et al., C. R. Acad. Sci., Sér. 1 Math. 336 (2003) 277–282] as an iterative algorithm to approximate the absorbing boundary condition, in unbounded domains. That same method turns to be an efficient tool to make numerical zooms in regions of a particular interest. The TOS method enjoys, then, the ability to compute small structures one wants to capture and the reliability to obtain the behavior of the solution at infinity, when handling exterior problems. The main aim of the paper is to use this modified Schwarz procedure as a preconditioner to Krylov subspaces methods so to accelerate the calculations. A detailed study concludes to a super-linear convergence of GMRES and enables us to state accurate estimates on the convergence speed. Afterward, some implementation hints are discussed. Analytical and numerical examples are also provided and commented that demonstrate the reliability of the TOS-preconditioner.
ISSN:0764-583X
1290-3841
DOI:10.1051/m2an/2010032