A digital interface for gyroscopes controlling the primary and secondary mode using bandpass sigma–delta modulation
This paper demonstrates a micro-electro-mechanical gyroscope system with extensive use of sigma–delta (ΣΔ) modulation in both, primary and secondary modes. Both control schemes are implemented digitally on a field programmable gate array (FPGA). The primary loop has a bandpass ΣΔ digital-to-analog c...
Gespeichert in:
Veröffentlicht in: | Sensors and actuators. A. Physical. 2010-08, Vol.162 (2), p.388-393 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper demonstrates a micro-electro-mechanical gyroscope system with extensive use of sigma–delta (ΣΔ) modulation in both, primary and secondary modes. Both control schemes are implemented digitally on a field programmable gate array (FPGA). The primary loop has a bandpass ΣΔ digital-to-analog converter (DAC) driving the primary mass into resonance using a two-level driver. With this strategy of replacing the discrete DAC of the primary oscillation control with a bandpass ΣΔ-DAC, the analog circuit complexity is enormously reduced. The Coriolis rate signal is converted into a bit stream with a new excess loop delay (ELD) compensated micro-electro-mechanical ΣΔ modulator (ΣΔM) incorporating the gyroscope in the loop with a second-order electrical bandpass filter (BPF). To investigate the ELD effect, this electro-mechanical ΣΔM is implemented on the FPGA emulating continuous-time (CT) behavior. Measurements show stable modulators, with an ELD of nearly one clock period of the sampled system, achieving in-band noise (IBN) below −60
dBFS. The full-scale (FS) is measured to 1019°/s. This paper demonstrates that the stability of ΣΔ modulators with large ELD can be ensured with the new ELD compensation technique. |
---|---|
ISSN: | 0924-4247 1873-3069 |
DOI: | 10.1016/j.sna.2010.05.034 |