Efficient Design of Logical Structures and functions using Nanotechnology Based Quantum Dot Cellular Automata Design

In this paper, the different types of logical structure based on Quantum dot Cellular Automata (QCA) design are discussed. The QCA offers a new transistorless computing paradigm in nanotechnology. It has the potential for attractive features such as faster speed , smaller size and low power consumpt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computer applications 2010-01, Vol.3 (5), p.35-42
Hauptverfasser: lakshmi, S Karthigai, Athisha, G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, the different types of logical structure based on Quantum dot Cellular Automata (QCA) design are discussed. The QCA offers a new transistorless computing paradigm in nanotechnology. It has the potential for attractive features such as faster speed , smaller size and low power consumption than transistor based technology .By taking the advantages of QCA we are able to design interesting computational architecture. The basic logic elements used in this technology are the inverter and the majority gate. The other logical structures are designed using the basic elements. Here, we have designed the logical structures using 2cells inverter instead of 7cells inverter. By applying this method, the hardware requirements for a QCA design can be reduced. These structures are designed and simulated using QCADesigner. The QCA designer is a design and simulation tool for quantum dot cellular automata. The standard functions and the simplified majority expressions corresponding to these standard functions are also presented.
ISSN:0975-8887
0975-8887
DOI:10.5120/726-1019