Quantum dots as a sensor for quantitative visualization of surface charges on single living cells with nano-scale resolution

We developed a technique using quantum dot (QD) as a sensor for quantitative visualization of the surface charge on biological cells with nano-scale resolution. The QD system was designed and synthesized using amino modified CdSe/ZnS nanoparticles. In a specially designed buffer solution, they are p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biosensors & bioelectronics 2011-01, Vol.26 (5), p.2114-2118
Hauptverfasser: Huang, Yao-Xiong, Zheng, Xin-Jing, Kang, Li-Li, Chen, Xing-Yao, Liu, Wen-Jing, Huang, Bao-Tian, Wu, Zheng-Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We developed a technique using quantum dot (QD) as a sensor for quantitative visualization of the surface charge on biological cells with nano-scale resolution. The QD system was designed and synthesized using amino modified CdSe/ZnS nanoparticles. In a specially designed buffer solution, they are positively charged and can homogeneously disperse in the aqueous environment to label all the negative charges on the surfaces of living cells. Using a wide-field optical sectioning microscopy to achieve 2D/3D imaging of the QD-labeled cells, we determined the charge densities of different kinds of cells from normal to mutant ones. The information about the surface charge distribution is significant in evaluating the structure, function, biological behavior and even malignant transformation of cells.
ISSN:0956-5663
1873-4235
DOI:10.1016/j.bios.2010.09.016