Meso-scale computational modeling of the plastic-damage response of cementitious composites

Concrete is considered as a 3-phase composite material; mortar matrix, aggregates, and interfacial transmission zone (ITZ). In order to investigate the contribution of each phase to the strength and damage response of concrete, 2-D and 3-D meso-scale simulations based on a coupled plasticity-damage...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cement and concrete research 2011-03, Vol.41 (3), p.339-358
Hauptverfasser: Kim, Sun-Myung, Abu Al-Rub, Rashid K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Concrete is considered as a 3-phase composite material; mortar matrix, aggregates, and interfacial transmission zone (ITZ). In order to investigate the contribution of each phase to the strength and damage response of concrete, 2-D and 3-D meso-scale simulations based on a coupled plasticity-damage model are carried out. The aggregates are modeled as a linear-elastic material, whereas the mortar matrix and ITZ are modeled using a coupled plasticity-damage model with different tensile and compressive mechanical behavior. Aggregate shape, distribution, and volume fraction are considered as simulated variables. The effect of the ITZ thickness and the strength of the ITZ and mortar matrix are also evaluated. It is shown that the behavior of concrete is merely dependent on the aggregate distribution and the strength of the mortar matrix, but dependent on aggregate shape, size, and volume fraction, and the thickness and strength of the ITZ.
ISSN:0008-8846
1873-3948
DOI:10.1016/j.cemconres.2010.12.002