The fracture energy of metal fibre reinforced ceramic composites (MFCs)

A model is presented for prediction of the fracture energy of ceramic–matrix composites containing dispersed metallic fibres. It is assumed that the work of fracture comes entirely from pull-out and/or plastic deformation of fibres bridging the crack plane. Comparisons are presented between these pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composites science and technology 2011-02, Vol.71 (3), p.266-275
Hauptverfasser: Pemberton, S.R., Oberg, E.K., Dean, J., Tsarouchas, D., Markaki, A.E., Marston, L., Clyne, T.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A model is presented for prediction of the fracture energy of ceramic–matrix composites containing dispersed metallic fibres. It is assumed that the work of fracture comes entirely from pull-out and/or plastic deformation of fibres bridging the crack plane. Comparisons are presented between these predictions and experimental measurements made on a commercially-available composite material of this type, containing stainless steel (304) fibres in a matrix predominantly comprising alumina and alumino-silicate phases. Good agreement is observed, and it’s noted that there is scope for the fracture energy levels to be high (∼20 kJ m −2). Higher toughness levels are both predicted and observed for coarser fibres, up to a practical limit for the fibre diameter of the order of 0.5 mm. Other deductions are also made concerning strategies for optimisation of the toughness of this type of material.
ISSN:0266-3538
1879-1050
DOI:10.1016/j.compscitech.2010.10.011