Corrosion inhibition performance of 2-mercaptobenzimidazole and 2-mercaptobenzoxazole compounds for protection of mild steel in hydrochloric acid solution

The effect of some mercapto functional azole compounds on the corrosion of mild steel in 1 M hydrochloric acid solution was studied by polarization and electrochemical impedance spectroscopy (EIS). Polarization studies showed depression of cathodic and anodic polarization curves in the presence of m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2010-02, Vol.55 (5), p.1720-1724
Hauptverfasser: Mahdavian, M., Ashhari, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effect of some mercapto functional azole compounds on the corrosion of mild steel in 1 M hydrochloric acid solution was studied by polarization and electrochemical impedance spectroscopy (EIS). Polarization studies showed depression of cathodic and anodic polarization curves in the presence of mercapto functional azole compounds, indicating mixed type corrosion inhibition of the compounds. Double layer capacitance and charge transfer resistance values were derived from EIS results. Changes in impedance parameters are indicative of adsorption of these compounds on the metal surface. Surface analysis SEM/EDX showing presence of sulfur on the surface confirmed the adsorption of the azole compounds on the mild steel surface as showed by electrochemical methods. Both compounds contain a pyridine-like nitrogen atom and a sulfur atom in their molecular structure, while they differ in only one heteroatom: oxygen in the oxazole ring and pyrrole-like nitrogen in the imidazole ring. The results of the electrochemical techniques revealed that changing the pyrrole like nitrogen atom to oxygen atom in the azole ring results in a decrease of corrosion inhibition performance in hydrochloric acid solution, which could be related to more negative charge on pyrrole-like nitrogen atom in comparison to oxygen atom as depicted by quantum chemical calculations.
ISSN:0013-4686
1873-3859
DOI:10.1016/j.electacta.2009.10.055