ZnO nanosphere fabrication using the functionalized polystyrene nanoparticles for dye-sensitized solar cells

The nano-hollow spherical ZnO (NHS ZnO) photoelectrodes were prepared using functionalized polystyrene nanoparticles with flexible dimensional control of the particle diameter for dye-sensitized solar cells applications. NHS ZnO was formed by ZnO nanoparticles that accumulated on the surface of func...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2010-09, Vol.55 (22), p.6563-6569
Hauptverfasser: Jung, Mi-Hee, Yun, Ho-Gyeong, Kim, Sanghee, Kang, Man Gu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The nano-hollow spherical ZnO (NHS ZnO) photoelectrodes were prepared using functionalized polystyrene nanoparticles with flexible dimensional control of the particle diameter for dye-sensitized solar cells applications. NHS ZnO was formed by ZnO nanoparticles that accumulated on the surface of functionalized polystyrene with a high ionic strength. This method represents a one-step preparation method for an inorganic shell via polymerization between ZnO complexes. Even though NHS ZnO has a submicron size, it composed of nanoparticles that connect with each other, thereby implying good electron transfer properties, and has a high surface area. The submicron-sized diameter NHS ZnO has an enhanced light scattering capacity, which promotes the photons with more opportunities to be absorbed by the N719 dye molecules. Therefore, the ZnO films prepared from 600 nm to 1000 nm NHS ZnO possessed higher IPCE values over a wide range (from 400 nm to 750 nm) compared to films of the 300 nm ZnO due to the enhanced light scattering capacities of the film. In photocurrent–voltage measurements, the short-circuit current density of 300 nm and 600 nm NHS ZnO increases from 3.33 mA/cm 2 to 6.53 mA/cm 2 while the cell efficiency increases from 1.04% to 3.02% due to the light scattering efficiency. Electrochemical impedance spectroscopy showed that electrons in NHS ZnO with a larger particle size have a longer electron lifetime than NHS ZnO with a smaller particle size, as the latter hinders the electron transport in the NHS ZnO nanostructured films.
ISSN:0013-4686
1873-3859
DOI:10.1016/j.electacta.2010.06.021