Effect of storage temperature on quality of light and full-fat ice cream

Ice cream quality is dependent on many factors including storage temperature. Currently, the industry standard for ice cream storage is −28.9°C. Ice cream production costs may be decreased by increasing the temperature of the storage freezer, thus lowering energy costs. The first objective of this r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of dairy science 2011-05, Vol.94 (5), p.2213-2219
Hauptverfasser: Buyck, J.R., Baer, R.J., Choi, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ice cream quality is dependent on many factors including storage temperature. Currently, the industry standard for ice cream storage is −28.9°C. Ice cream production costs may be decreased by increasing the temperature of the storage freezer, thus lowering energy costs. The first objective of this research was to evaluate the effect of 4 storage temperatures on the quality of commercial vanilla-flavored light and full-fat ice cream. Storage temperatures used were −45.6, −26.1, and −23.3°C for the 3 treatments and −28.9°C as the control or industry standard. Ice crystal sizes were analyzed by a cold-stage microscope and image analysis at 1, 19.5, and 39 wk of storage. Ice crystal size did not differ among the storage temperatures of light and full-fat ice creams at 19.5 or 39 wk. An increase in ice crystal size was observed between 19.5 and 39 wk for all storage temperatures except −45.6°C. Coldness intensity, iciness, creaminess, and storage/stale off-flavor of the light and full-fat ice creams were evaluated at 39 wk of storage. Sensory evaluation indicated no difference among the different storage temperatures for light and full-fat ice creams. In a second study, light and full-fat ice creams were heat shocked by storing at −28.9°C for 35 wk and then alternating between −23.3 and −12.2°C every 24h for 4 wk. Heat-shocked ice creams were analyzed at 2 and 4 wk of storage for ice crystal size and were evaluated by the sensory panel. A difference in ice crystal size was observed for light and full-fat ice creams during heat-shock storage; however, sensory results indicated no differences. In summary, storage of light or full-fat vanilla-flavored ice creams at the temperatures used within this research did not affect quality of the ice creams. Therefore, ice cream manufacturers could conserve energy by increasing the temperature of freezers from −28.9 to −26.1°C. Because freezers will typically fluctuate from the set temperature, usage of −26.1°C allows for a safety factor, even though storage at −23.3°C did not affect ice cream quality.
ISSN:0022-0302
1525-3198
DOI:10.3168/jds.2010-3897