Relaxin remodels fibrotic healing following myocardial infarction

In the setting of myocardial infarction (MI), implanted stem cell viability is low and scar formation limits stem cell homing, viability, and integration. Thus, interventions that favorably remodel fibrotic healing may benefit stem cell therapies. However, it remains unclear whether it is feasible a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Laboratory investigation 2011-05, Vol.91 (5), p.675-690
Hauptverfasser: Samuel, Chrishan S, Cendrawan, Sofia, Gao, Xiao-Ming, Ming, Ziqiu, Zhao, Chongxin, Kiriazis, Helen, Xu, Qi, Tregear, Geoffrey W, Bathgate, Ross A D, Du, Xiao-Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the setting of myocardial infarction (MI), implanted stem cell viability is low and scar formation limits stem cell homing, viability, and integration. Thus, interventions that favorably remodel fibrotic healing may benefit stem cell therapies. However, it remains unclear whether it is feasible and safe to remodel fibrotic healing post-MI without compromising ventricular remodeling and dysfunction. This study, therefore, determined the anti-fibrotic and other effects of the hormone, relaxin in a mouse model of MI. Adult male mice underwent left coronary artery ligation-induced MI and were immediately treated with recombinant human relaxin (MI+RLX) or vehicle (MI+VEH) over 7 or 30 days, representing time points of early and mature fibrotic healing. Cardiac function was assessed by echocardiography and catheterization, while comprehensive immunohistochemistry, morphometry, and western blotting were performed to explore the relaxin-induced mechanisms of action post-MI. RLX significantly inhibited the MI-induced progression of cardiac fibrosis over 7 and 30 days, which was associated with a reduction in TGF-β1 expression, myofibroblast differentiation, and cardiomyocyte apoptosis in addition to a promotion of matrix metalloproteinase-13 levels and de novo blood vessel growth (all P
ISSN:0023-6837
1530-0307
DOI:10.1038/labinvest.2010.198