Diverging equilibration times in long-range quantum spin models

The approach to equilibrium is studied for long-range quantum Ising models where the interaction strength decays like r(-α) at large distances r with an exponent α not exceeding the lattice dimension. For a large class of observables and initial states, the time evolution of expectation values can b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2011-04, Vol.106 (13), p.130601-130601, Article 130601
1. Verfasser: Kastner, Michael
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The approach to equilibrium is studied for long-range quantum Ising models where the interaction strength decays like r(-α) at large distances r with an exponent α not exceeding the lattice dimension. For a large class of observables and initial states, the time evolution of expectation values can be calculated. We prove analytically that, at a given instant of time t and for sufficiently large system size N, the expectation value of some observable (t) will practically be unchanged from its initial value (0). This finding implies that, for large enough N, equilibration effectively occurs on a time scale beyond the experimentally accessible one and will not be observed in practice.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.106.130601