Hierarchical Nanotextured Microelectrodes Overcome the Molecular Transport Barrier To Achieve Rapid, Direct Bacterial Detection

Detection of biomolecules at low abundances is crucial to the rapid diagnosis of disease. Impressive sensitivities, typically measured with small model analytes, have been obtained with a variety of nano- and microscale sensors. A remaining challenge, however, is the rapid detection of large native...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2011-04, Vol.5 (4), p.3360-3366
Hauptverfasser: Soleymani, Leyla, Fang, Zhichao, Lam, Brian, Bin, Xiaomin, Vasilyeva, Elizaveta, Ross, Ashley J, Sargent, Edward H, Kelley, Shana O
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Detection of biomolecules at low abundances is crucial to the rapid diagnosis of disease. Impressive sensitivities, typically measured with small model analytes, have been obtained with a variety of nano- and microscale sensors. A remaining challenge, however, is the rapid detection of large native biomolecules in real biological samples. Here we develop and investigate a sensor system that directly addresses the source of this challenge: the slow diffusion of large biomolecules traveling through solution to fixed sensors, and inefficient complexation of target molecules with immobilized probes. We engineer arrayed sensors on two distinct length scales: a ∼100 μm length scale commensurable with the distance bacterial mRNA can travel in the 30 min sample-to-answer duration urgently required in point-of-need diagnostic applications; and the nanometer length scale we prove necessary for efficient target capture. We challenge the specificity of our hierarchical nanotextured microsensors using crude bacterial lysates and document the first electronic chip to sense trace levels of bacteria in under 30 min.
ISSN:1936-0851
1936-086X
DOI:10.1021/nn200586s