Effect of a calcium-channel blocker (verapamil) on the morphology, cytoskeleton and collagenase activity of human skin fibroblasts

Abstract The effects of verapamil modulating collagen biosynthesis have prompted us to study the role of this drug in cultured fibroblasts. In this article, we describe the effects of verapamil on fibroblast behaviour, with special emphasis to phenotypic modifications, reorganisation of actin filame...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Burns 2011-06, Vol.37 (4), p.616-625
Hauptverfasser: Boggio, Ricardo F, Freitas, Vanessa M, Cassiola, Flávia M, Urabayashi, Marcel, Machado-Santelli, Gláucia M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract The effects of verapamil modulating collagen biosynthesis have prompted us to study the role of this drug in cultured fibroblasts. In this article, we describe the effects of verapamil on fibroblast behaviour, with special emphasis to phenotypic modifications, reorganisation of actin filaments and secretion of MMP1. Human dermal fibroblasts treated with 50-μM verapamil changed their normal spindle-shaped morphology to stellate. Treated cells showed discrete reorganisation of actin filaments, as revealed by fluorescein isothiocyanate (FITC)-phalloidin staining and confocal microscopy. We hypothesised that these effects would be associated to lower levels of cytosolic Ca2+ . Indeed, short time loading with calcium green confirmed that verapamil-treated fibroblasts exhibited lower intracellular calcium levels compared to controls. We also observed that verapamil increases the secretion of MMP1 in cultured fibroblasts, as demonstrated by zymography, specific substrate assays and immunoblot. The morphological alterations induced by verapamil are neither cytotoxic nor associated with other dramatic cytoskeleton alterations. Thus we may conclude that this drug enhances collagenase secretion and does not disrupt the major tracks necessary to deliver these enzymes in the extracellular space. The present results suggested that verapamil could be used at physiological levels to enhance collagen I breakdown, and may be considered a potential candidate for intralesional therapy of wound healing and fibrocontractive diseases.
ISSN:0305-4179
1879-1409
DOI:10.1016/j.burns.2010.07.012