Lipid-Free Apolipoprotein A-I and Discoidal Reconstituted High-Density Lipoproteins Differentially Inhibit Glucose-Induced Oxidative Stress in Human Macrophages

OBJECTIVE—The goal of this study was to investigate the mechanisms by which apolipoprotein (apo) A-I, in the lipid-free form or as a constituent of discoidal reconstituted high-density lipoproteins ([A-I]rHDL), inhibits high-glucose–induced redox signaling in human monocyte-derived macrophages (HMDM...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arteriosclerosis, thrombosis, and vascular biology thrombosis, and vascular biology, 2011-05, Vol.31 (5), p.1192-1200
Hauptverfasser: Tabet, Fatiha, Lambert, Gilles, Cuesta Torres, Luisa F, Hou, Liming, Sotirchos, Irene, Touyz, Rhian M, Jenkins, Alicia J, Barter, Philip J, Rye, Kerry-Anne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:OBJECTIVE—The goal of this study was to investigate the mechanisms by which apolipoprotein (apo) A-I, in the lipid-free form or as a constituent of discoidal reconstituted high-density lipoproteins ([A-I]rHDL), inhibits high-glucose–induced redox signaling in human monocyte-derived macrophages (HMDM). METHODS AND RESULTS—HMDM were incubated under normal (5.8 mmol/L) or high-glucose (25 mmol/L) conditions with native high-density lipoproteins (HDL) lipid-free apoA-I from normal subjects and from subjects with type 2 diabetes (T2D) or (A-I)rHDL. Superoxide (O2) production was measured using dihydroethidium fluorescence. NADPH oxidase activity was assessed using lucigenin-derived chemiluminescence and a cyotochrome c assay. p47phox translocation to the plasma membrane, Nox2, superoxide dismutase 1 (SOD1), and SOD2 mRNA and protein levels were determined by real-time polymerase chain reaction and Western blotting. Native HDL induced a time-dependent inhibition of O2 generation in HMDM incubated with 25 mmol/L glucose. Lipid-free apoA-I and (A-I)rHDL increased SOD1 and SOD2 levels and attenuated 25 mmol/L glucose-mediated increases in cellular O2, NADPH oxidase activity, p47 translocation, and Nox2 expression. Lipid-free apoA-I mediated its effects on Nox2, SOD1, and SOD2 via ABCA1. (A-I)rHDL-mediated effects were via ABCG1 and scavenger receptor BI. Lipid-free apoA-I from subjects with T2D inhibited reactive oxygen species generation less efficiently than normal apoA-I. CONCLUSION—Native HDL, lipid-free apoA-I and (A-I)rHDL inhibit high-glucose–induced redox signaling in HMDM. The antioxidant properties of apoA-I are attenuated in T2D.
ISSN:1079-5642
1524-4636
DOI:10.1161/ATVBAHA.110.222000