Native IL-32 is released from intestinal epithelial cells via a non-classical secretory pathway as a membrane-associated protein
Although IL-32 has been shown to be induced under various pathological conditions, a detailed understanding of native IL-32 intracellular distribution and mechanism of release from cells has not been reported. We examined the expression of IL-32 in the intestinal epithelial cell line HT-29 following...
Gespeichert in:
Veröffentlicht in: | Cytokine (Philadelphia, Pa.) Pa.), 2011-01, Vol.53 (1), p.74-83 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Although IL-32 has been shown to be induced under various pathological conditions, a detailed understanding of native IL-32 intracellular distribution and mechanism of release from cells has not been reported. We examined the expression of IL-32 in the intestinal epithelial cell line HT-29 following TNFα and IFNγ co-stimulation. The subcellular localization of induced IL-32 was associated with the membrane of lipid droplet-like structures and vacuolar structures that co-localized with markers of endosomes and lysosomes. Prolonged co-stimulation resulted in cell death and appearance of IL-32 in the culture medium. IL-32 released from co-stimulated HT-29 cells was found in a detergent-sensitive particulate fraction, and in a step density gradient the IL-32 particulate was buoyant, suggesting association with a membrane-bound vesicle. Upon Triton X-114 partitioning, most of the IL-32 partitioned to the detergent phase, suggesting hydrophobic characteristics. When IL-32-containing vesicles were subjected to protease K treatment, a protease resistant ∼12kDa fragment was generated from ∼24kDa IL-32. We propose that under these conditions, native IL-32 is released via a non-classical secretory route perhaps involving multi-vesicular bodies and exosomes. Demonstration of membrane association for both intracellular and released IL-32 suggests this unique cytokine may have a complex biosynthetic pathway and mechanism of action. |
---|---|
ISSN: | 1043-4666 1096-0023 |
DOI: | 10.1016/j.cyto.2010.09.002 |