Relationship between iron-meteorite composition and size: Compositional distribution of irons from North Africa
During the past three decades many iron meteorites have been collected from the deserts of North Africa. Almost all are now characterized, and the distribution among classes is found to be very different from those that were in museums prior to the collection of meteorites from hot and cold (Antarct...
Gespeichert in:
Veröffentlicht in: | Geochimica et cosmochimica acta 2011-04, Vol.75 (7), p.1757-1772 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | During the past three decades many iron meteorites have been collected from the deserts of North Africa. Almost all are now characterized, and the distribution among classes is found to be very different from those that were in museums prior to the collection of meteorites from hot and cold (Antarctica) deserts. Similar to the iron meteorites from Antarctica, the irons from Northwest Africa include a high fraction of ungrouped irons and of minor subgroups of group IAB. The different distribution is attributed to the small median size of the desert meteorites (∼1.3
kg in North African irons, ∼30
kg in non-desert irons). It appears that a sizable fraction of these small (several centimeter) masses constitute melt pockets produced by impacts in chondritic regoliths; they were never part of a large (meter-to-kilometer) magma bodies. As a result, a meter-size fragment ejected from the regolith of the asteroid may contain several of these small metallic masses. It may be that such stochastic sampling effects enhanced the fraction of IAB-sHL irons among the irons from Northwest Africa.
The variety observed in small meteoroids is also enhanced because (relative to large) small fragments are more efficiently ejected from asteroids and because the orbital parameters of small meteoroids are more strongly affected by collisions and drag effects, they evolve to have Earth-crossing perihelia more rapidly than large meteoroids; as a result, the set of small meteoroids tends to sample a larger number of parent asteroids than does the set of larger meteoroids. |
---|---|
ISSN: | 0016-7037 1872-9533 |
DOI: | 10.1016/j.gca.2010.12.017 |