Mechanism of fluorescent cocoon sex identification for silkworms Bombyx mori
By using silkworms, Bombyx mori , fluorescent cocoon sex identification (FCSI) as an experimental material, direct fluorescence spectrometry of the cocoon surface indicates that the fluorescent color of silkworm cocoons is made up of two peaks of yellow and blue-purple fluorescence emission. The flu...
Gespeichert in:
Veröffentlicht in: | Science China. Life sciences 2010-11, Vol.53 (11), p.1330-1339 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | By using silkworms,
Bombyx mori
, fluorescent cocoon sex identification (FCSI) as an experimental material, direct fluorescence spectrometry of the cocoon surface indicates that the fluorescent color of silkworm cocoons is made up of two peaks of yellow and blue-purple fluorescence emission. The fluorescent difference between male and female cocoons is attributed to the differential absorption of yellow fluorescent substances by the midgut tissue of 5th instar female silkworms. Thin layer chromatography (TLC) and fluorescent spectra indicate that blue-purple fluorescent substances are composed of at least five blue-purple fluorescent pigments, and yellow fluorescent substances are made up of at least three. UV spectra and AlCl
3
color reaction show that the three fluorescent yellow pigments are flavonoids or their glycosides. Silkworm FCSI is due to selective absorption or accumulation of the yellow fluorescent pigments by the posterior midgut cells of female 5th instar larvae. The cells of the FCSI silkworm midgut, especially the cylinder intestinal cells of the posterior midgut have a component which is a yellow fluorescent pigment-specific binding protein that may be vigorously expressed in the 5th instar larvae. |
---|---|
ISSN: | 1674-7305 1869-1889 |
DOI: | 10.1007/s11427-010-4084-3 |